(±)-3,4-Methylenedioxymethamphetamine treatment in adult rats impairs path integration learning: A comparison of single vs once per week treatment for 5 weeks

Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, United States
Neuropharmacology (Impact Factor: 4.82). 12/2008; DOI: 10.1016/j.neuropharm.2008.07.006

ABSTRACT 3,4-Methlylenedioxymethamphetamine (MDMA) administration (4 × 15 mg/kg) on a single day has been shown to cause path integration deficits in rats. While most animal experiments focus on single binge-type models of MDMA use, many MDMA users take the drug on a recurring basis. The purpose of this study was to compare the effects of repeated single-day treatments with MDMA (4 × 15 mg/kg) once weekly for 5 weeks to animals that only received MDMA on week 5 and saline on weeks 1–4. In animals treated with MDMA for 5 weeks, there was an increase in time spent in the open area of the elevated zero maze suggesting a decrease in anxiety or increase in impulsivity compared to the animals given MDMA for 1 week and saline treated controls. Regardless of dosing regimen, MDMA treatment produced path integration deficits as evidenced by an increase in latency to find the goal in the Cincinnati water maze. Animals treated with MDMA also showed a transient hypoactivity that was not present when the animals were re-tested at the end of cognitive testing. In addition, both MDMA-treated groups showed comparable hyperactive responses to a later methamphetamine challenge. No differences were observed in spatial learning in the Morris water maze during acquisition or reversal but MDMA-related deficits were seen on reduced platform-size trials. Taken together, the data show that a single-day regimen of MDMA induces deficits similar to that of multiple weekly treatments.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of acute and sub-chronic MDMA were assessed using a procedure designed to test rodent working memory capacity: the odor span task (OST). Rats were trained to select an odor that they had not previously encountered within the current session, and the number of odors to remember was incremented up to 24 during the course of each session. In order to separate drug effects on the OST from more general performance impairment, a simple olfactory discrimination was also assessed in each session. In Experiment 1, acute doses of MDMA were administered prior to select sessions. MDMA impaired memory span in a dose-dependent fashion, but impairment was seen only at doses (1.8 and 3.0 mg/kg) that also increased response omissions on both the simple discrimination and the OST. In Experiment 2, a sub-chronic regimen of MDMA (10.0 mg/kg, twice daily over four days) was administered after OST training. There was no evidence of reduced memory span following sub-chronic MDMA, but a temporary increase in omission errors on the OST was observed. In addition, rats exposed to sub-chronic MDMA showed delayed learning when the simple discrimination was reversed. Overall, the disruptive effects of both acute and sub-chronic MDMA appeared to be due to non-mnemonic processes, rather than effects on specific memory functions.
    Neurobiology of Learning and Memory 10/2014; DOI:10.1016/j.nlm.2014.06.012 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The abuse of methylenedioxymethamphetamine (MDMA) during pregnancy is of concern. MDMA treatment of rats during a period of brain growth analogous to late human gestation leads to neurochemical and behavioral changes. MDMA from postnatal day (P)11-20 in rats produces reductions in serotonin and deficits in spatial and route-based navigation. In this experiment we examined the impact of MDMA from P11-20 (20 mg/kg twice daily, 8 h apart) on neuronal architecture. Golgi impregnated sections showed significant changes. In the nucleus accumbens, the dendrites were shorter with fewer spines, whereas in the dentate gyrus the dendritic length was decreased but with more spines, and for the entorhinal cortex, reductions in basilar and apical dendritic lengths in MDMA animals compared with saline animals were seen. The data show that neuronal cytoarchitectural changes are long-lasting following developmental MDMA exposure and are in regions consistent with the learning and memory deficits observed in such animals.
    Toxicology Reports 09/2014; 1. DOI:10.1016/j.toxrep.2014.08.018
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of ecstasy (MDMA) among young adults has dramatically increased over the years. Since MDMA may impair the users' driving ability, the risk of being involved in a motor vehicle accident (MVA) is notably increased. Minimal traumatic brain injury (mTBI) a common consequence of MVAs-produces short- and long-term physical, cognitive, and emotional impairments. To investigate the effects of an acute dose of MDMA in mice subjected to closed head mTBI. Mice received 10 mg/kg MDMA 1 h prior to the induction of mTBI. Behavioral tests were conducted 7 and 30 days post-injury. In addition to the behavioral tests, phosphorylation of IGF-1R, ERK, and levels of tyrosine hydroxylase (TH) were measured. mTBI mice showed major cognitive impairments in all cognitive tests conducted. No additional impairments were seen if mTBI was preceded by one dose of MDMA. On the contrary, a beneficial effect was seen in these mice. The western blot analysis of TH revealed a significant decrease in the mTBI mice. These decreases were reversed in mice that were subjected to MDMA prior to the trauma. The presence of MDMA at the time of mTBI minimizes the alteration of visual and spatial memory of the injured mice. The IGF-1R pathway was activated due to mTBI and MDMA but was not the main contributor to the cognitive improvements. MDMA administration inverted the TH decreases seen after injury. We believe this may be the major cause of the cognitive improvements seen in these mice.
    Psychopharmacology 12/2010; 214(4):877-89. DOI:10.1007/s00213-010-2098-y · 3.99 Impact Factor