Article

Incorporating uncertainty in optimal decision making: Integrating mixed integer programming and simulation to solve combinatorial problems

C.T. Bauer College of Business, Department of DISC, 334 Melcher Hall, 4800 Calhoun Road, University of Houston, Houston, TX 77204-6021, USA
Computers & Industrial Engineering (Impact Factor: 1.69). 02/2009; 56(1):106-112. DOI: 10.1016/j.cie.2008.04.003
Source: DBLP

ABSTRACT We introduce a novel methodology that integrates optimization and simulation techniques to obtain estimated global optimal solutions to combinatorial problems with uncertainty such as those of facility location, facility layout, and scheduling. We develop a generalized mixed integer programming (MIP) formulation that allows iterative interaction with a simulation model by taking into account the impact of uncertainty on the objective function value of previous solutions. Our approach is generalized, efficient, incorporates the impact of uncertainty of system parameters on performance and can easily be incorporated into a variety of applications. For illustration, we apply this new solution methodology to the NP-hard multi-period multi-product facility location problem (MPP-FLP). Our results show that, for this problem, our iterative procedure yields up to 9.4% improvement in facility location-related costs over deterministic optimization and that these cost savings increase as the variability in demand and supply uncertainty are increased.

0 Followers
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we consider a manufacturer that has strategically decided to outsource the company specific reverse logistics (RL) activities to a third-party logistics (3PL) service provider. Given the locations of the collection centers and reprocessing facilities, the RL network design of the 3PL involves finding the number and places of the test centers under supply uncertainty associated with the quantity of the returns. Hybrid simulation-analytical modeling, which iteratively uses mixed integer programming models and simulation, is a suitable framework for handling the uncertainties in the stochastic RL network design problem. We present two hybrid simulation-analytical modeling approaches for the RL network design of the 3PL. The first one is an adaptation of a problem-specific approach proposed in the literature for the design of a distribution network design of a 3PL. The second one involves the development of a generic approach based on a recently proposed novel solution methodology. In the generic approach instead of exchanging problem-specific parameters between the analytical and simulation model, the interaction is governed by reflecting the impact of uncertainty obtained via simulation to the objective function of the analytical model. The results obtained from the two approaches under different scenario and parameter settings are discussed.
    Computers & Industrial Engineering 04/2014; 70:74-89. DOI:10.1016/j.cie.2014.01.004 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The possibilities of combining simulation and optimization are vast and the appropriate design highly depends on the problem characteristics. Therefore, it is very important to have a good overview of the different approaches. The taxonomies and classifications proposed in the literature do not cover the complete range of methods and overlook some important criteria. We provide a taxonomy that aims at giving an overview of the full spectrum of current simulation–optimization approaches. Our study may guide researchers who want to use one of the existing methods, give insights into the cross-fertilization of the ideas applied in those methods and create a standard for a better communication in the scientific community. Future reviews can use the taxonomy here described to classify both general approaches and methods for specific application fields.
    Simulation Modelling Practice and Theory 08/2014; 46. DOI:10.1016/j.simpat.2014.03.007 · 1.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We formulate a p-median facility location model with a queuing approximation to determine the optimal locations of a given number of dispensing sites (Point of Dispensing-PODs) from a predetermined set of possible locations and the optimal allocation of staff to the selected locations. Specific to an anthrax attack, dispensing operations should be completed in 48 hours to cover all exposed and possibly exposed people. A nonlinear integer programming model is developed and it formulates the problem of determining the optimal locations of facilities with appropriate facility deployment strategies, including the amount of servers with different skills to be allocated to each open facility. The objective of the mathematical model is to minimize the average transportation and waiting times of individuals to receive the required service. The mathematical model has waiting time performance measures approximated with a queuing formula and these waiting times at PODs are incorporated into the p-median facility location model. A genetic algorithm is developed to solve this problem. Our computational results show that appropriate locations of these facilities can significantly decrease the average time for individuals to receive services. Consideration of demographics and allocation of the staff decreases waiting times in PODs and increases the throughput of PODs. When the number of PODs to open is high, the right staffing at each facility decreases the average waiting times significantly. The results presented in this paper can help public health decision makers make better planning and resource allocation decisions based on the demographic needs of the affected population.
    Biocontrol Science and Technology 10/2014; 4(4). DOI:10.1080/19488300.2014.965394 · 0.73 Impact Factor