In situ identification of a CAI candidate in 81P/Wild 2 cometary dust by confocal high resolution synchrotron X-ray fluorescence

Geosciences Institute/Mineralogy, Goethe University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt, Germany
Geochimica et Cosmochimica Acta (Impact Factor: 4.25). 09/2009; DOI: 10.1016/j.gca.2009.06.008

ABSTRACT We detected additional CAI-like material in STARDUST mission samples of comet 81P/Wild 2. Two highly refractory cometary dust fragments were identified in the impact track 110 [C2012, 0, 110, 0, 0] by applying high resolution synchrotron induced confocal and conventional XRF analysis (HR SR-XRF). The use of a polycapillary lens in front of the detector for confocal spectroscopy dramatically improves the fidelity of particle measurements by removing contribution from the surrounding aerogel. The high spatial resolution (300 × 300 nm2; 300 × 1000 nm2) obtained allowed the detailed non-destructive in situ (trapped in aerogel) study of impacted grains at the sub-μm level.For the two largest particles of the track, the terminal particle and a second particle along the impact track, Ca concentration is up to 30 times higher than CI and Ti is enriched by a factor of 2 compared to CI. High resolution (HR) SR-XRF mapping also reveals that the highest concentrations of Ca, Ti, Fe (and Ni) measured within each grain belongs to different areas of the respective maps which indicate that the particles are composed of several chemically diverse mineral phases. This is in agreement with the finding of a complex phase assemblage of highly refractory minerals in the first ever detected Stardust mission CAI grain “Inti” of Track 25.Principle component analysis (PCA) is a powerful tool for extracting the dominant mineral components and was applied to the two grains indicating that regions in the terminal particle and the second particle are consistent with anorthite or grossite and gehlenite, monticellite or Dmitryivanovite (CaAl2O4), respectively.Our new findings demonstrate that the HR SR-XRF with confocal geometry and PCA analysis is capable of identifying CAI-like fragments without the need to extract particles from the aerogel matrix which is a time-consuming, complex and destructive process.Furthermore, the detection of new CAI-like fragments in the coma dust of comet 81P/Wild 2 strengthens the observation that strong mixing effects and, therefore, mass transport before or during comet formation must have occurred at least up to the region where Kuiper Belt comets formed (∼30 AU).

  • [Show abstract] [Hide abstract]
    ABSTRACT: A new method for the quantification of X-ray fluorescence (XRF) was derived based on the fundamental parameter method (FPM). The FPM equations were adapted to accommodate the special case of confocal nano-XRF, i.e. X-ray nano-beam excitation coupled with confocal detection, taking into account the special characteristics of the detector channel polycapillary. A thorough error estimation algorithm based on the Monte Carlo method was applied, producing a detailed analysis of the uncertainties of the quantification results. The new FPM algorithm was applied on confocal nano-XRF data obtained from cometary dust returned by NASA's Stardust mission, recorded at beamline ID13 of the European Synchrotron Radiation Facility.
    Spectrochimica Acta Part B Atomic Spectroscopy 01/2012; 67:32–42. · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the fabrication and characterization of lithographically-fabricated arrays of micron-scale collimating channels, arranged like spokes around a single source position, for use in 3D, or confocal x-ray uorescence microscopy. A nearly energy-independent depth resolution of 1.7+/-0.1μm has been achieved from 4.5-10 keV, degrading to 3⊥0.5μm at 1.7 keV. This represents an order-of-magnitude improvement over prior results obtained using state-of-the-art, commercial polycapillaries as the collection optic. Due to their limited solid angle, the total collection efficiency of these optics is approximately 10× less than that obtained with polycapillaries. Three designs have been tested, with 1, 2, and 5-μm-wide channels ranging from 30-50 μm in depth and 2 mm in length. In addition to characterizing the devices in confocal geometry, the transmission behavior of individual channels was characterized using a small, highly collimated incident beam. These measurements reveal that, despite taking no particular steps to create smooth channel walls, they exhibit close to 100% reectivity up to the critical angle for total external reflection. Most of this reflected power is spread into a diffuse angular region around the specular reflection condition. These results significantly impact future designs of such collimating channels, since transmission through the channels via side-wall reflection limits their collimating power, and hence device resolution. Ray-tracing simulations, designed specifically for modeling the behavior of channel arrays, successfully account for the transmission behavior of the optics, and provide a useful tool for future optic design.
    Proceedings of SPIE - The International Society for Optical Engineering 10/2012; · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transmission electron microscopy examination of 87 large fragments from 16 carrot-shaped and bulbous Stardust (SD) tracks was performed to study the range and diversity of materials present in comet Wild 2. Olivines and low-Ca pyroxenes represent the largest proportions of fragments observed; however, a wide range of minerals and rocks were found including probable ferromagnesian, Al-rich and Si-rich chondrule fragments, a refractory inclusion, possible matrix mineral/lithic clasts, and probable condensate minerals. These materials, combined with fine-grained components in the tracks, are analogous to components in unequilibrated chondrite meteorites and cluster interplanetary dust particles (IDPs). Two unusual lithologies in the bulbous tracks are only observed in chondritic porous IDPs and may have direct links to IDPs. The absence of phyllosilicates indicates that comet Wild 2 may be a "dry" comet that did not accrete or form significant amounts of hydrated phases. Some large mineral fragments in the SD tracks are analogous to large mineral IDPs. The large variations of the coarse-grained components within and between all 16 tracks show that comet Wild 2 is mineralogically diverse and unequilibrated on nearly all scales and must have accreted materials from diverse source regions that were widely dispersed throughout the solar nebula.
    Meteoritics & planetary science 04/2012; 47(4):471-524. · 2.83 Impact Factor