Article

Shiveluch volcano: seismicity, deep structure and forecasting eruptions (kamchatka)

Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky 683006, Russia
Journal of Volcanology and Geothermal Research (Impact Factor: 2.52). 06/1997; 78(1-2):121-137. DOI: 10.1016/S0377-0273(96)00108-4

ABSTRACT The deep structure, Wadati-Benioff zone (focal zone) geometry and the magma feeding system of Shiveluch volcano are investigated based on 1962–1994 detailed seismic surveillance.A focal zone beneath Shiveluch is dipping at an angle of 70° at depths of 100–200 km. Based on the revealed interrelations between seismicity at depths of 105–120 km and an extrusive phase of its eruptions in 1980 through 1994, it is inferred that primary magmas, periodically feeding the crustal chamber, are melted at depths of at least 100 km. An upsurge of extrusive-explosive activity at the volcano is preceded and accompanied by the increasing number and energy of both volcanic earthquakes beneath the dome and tectonic or volcano-tectonic earthquakes in the zones of NW-striking crustal faults near the volcano.The eruption of April 1993 has been the most powerful since 1964. It was successfully predicted based on interactive use of all seismic data. At the same time the influence of seismicity at depths of 105–120 km under the volcano on the style (and consequently on prediction) of its activity is decisive.

0 Followers
 · 
34 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sheveluch is one the most active volcanoes of Kamchatka. This volcanic massif began to develop approximately 60,000-70,000 years ago. The present structure of the volcano includes three main units: Old Sheveluch (3283 m), the old caldera about 9 km in diameter and Young Sheveluch (2800 m). The historical catastrophic eruptions from Sheveluch occurred in 1854 and 1964.
    3 rd Biennial Workshop on Subduction Processes emphasizing the Kurile-Kamchatka-Aleutian Arcs (JKASP-3), Fairbanks, Alaska; 06/2002
  • [Show abstract] [Hide abstract]
    ABSTRACT: We give an overview of the 2005–2011 eruptions of Shiveluch Volcano together with the seismicity and deformations of the lava dome during dome growth. It is shown that the generation of the intracrater intrusive dome proceeded at a variable rate. The maximum discharge of erupted lava reached 0.6 million cubic meters per day. Increased explosive activity preceded periods of intensive growth of the lava dome. We determined the volumes and depths of the magma chambers that supplied magma for large eruptions of the volcano on November 12, 1964, February 28, 2005, and October 27, 2010. We calculated the effective viscosity of the 2007 and 2011 lava flows.
    Journal of Volcanology and Seismology 03/2013; 7(2). DOI:10.1134/S0742046313020061 · 0.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ~16-ka-long record of explosive eruptions from Shiveluch volcano (Kamchatka, NW Pacific) is refined using geochemical fingerprinting of tephra and radiocarbon ages. Volcanic glass from 77 prominent Holocene tephras and four Late Glacial tephra packages was analyzed by electron microprobe. Eruption ages were estimated using 113 radiocarbon dates for proximal tephra sequence. These radiocarbon dates were combined with 76 dates for regional Kamchatka marker tephra layers into a single Bayesian framework taking into account the stratigraphic ordering within and between the sites. As a result, we report ~1,700 high-quality glass analyses from Late Glacial–Holocene Shiveluch eruptions of known ages. These define the magmatic evolution of the volcano and provide a reference for correlations with distal fall deposits. Shiveluch tephras represent two major types of magmas, which have been feeding the volcano during the Late Glacial–Holocene time: Baidarny basaltic andesites and Young Shiveluch andesites. Baidarny tephras erupted mostly during the Late Glacial time (~16–12.8 ka BP) but persisted into the Holocene as subordinate admixture to the prevailing Young Shiveluch andesitic tephras (~12.7 ka BP–present). Baidarny basaltic andesite tephras have trachyandesite and trachydacite (SiO2 < 71.5 wt%) glasses. The Young Shiveluch andesite tephras have rhyolitic glasses (SiO2 > 71.5 wt%). Strongly calc-alkaline medium-K characteristics of Shiveluch volcanic glasses along with moderate Cl, CaO and low P2O5 contents permit reliable discrimination of Shiveluch tephras from the majority of other large Holocene tephras of Kamchatka. The Young Shiveluch glasses exhibit wave-like variations in SiO2 contents through time that may reflect alternating periods of high and low frequency/volume of magma supply to deep magma reservoirs beneath the volcano. The compositional variability of Shiveluch glass allows geochemical fingerprinting of individual Shiveluch tephra layers which along with age estimates facilitates their use as a dating tool in paleovolcanological, paleoseismological, paleoenvironmental and archeological studies. Electronic tables accompanying this work offer a tool for statistical correlation of unknown tephras with proximal Shiveluch units taking into account sectors of actual tephra dispersal, eruption size and expected age. Several examples illustrate the effectiveness of the new database. The data are used to assign a few previously enigmatic wide-spread tephras to particular Shiveluch eruptions. Our finding of Shiveluch tephras in sediment cores in the Bering Sea at a distance of ~600 km from the source permits re-assessment of the maximum dispersal distances for Shiveluch tephras and provides links between terrestrial and marine paleoenvironmental records.
    International Journal of Earth Sciences 01/2015; DOI:10.1007/s00531-015-1156-4 · 2.08 Impact Factor