Article

Chemical and biological properties of porcine secretin and secretin analogues modified in positions 3 and 4.

Gastroenterology (Impact Factor: 12.82). 05/1977; 72(4 Pt.2):797-800.
Source: PubMed

ABSTRACT The synthesis of secretin does not offer fundamental difficulties any longer. The problem of the stability of the hormone seems to be solved from a practical point of view. However, the mechanism of the inactivation of secretin in solution is not yet satisfactorily explained, alpha-beta Rearrangement of the Asp-Gly bond may play a role, but some observations indicate that inactivation is not a straight reaction. Like secretion [Ala-4] secretin shows beta-sympathomimetic activity. The availability of a suitable depot preparation permits physiological studies with secretin and its analogues after subcutaneous administration.

0 Bookmarks
 · 
52 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membrane adenylate cyclase from rat heart was activated by the two gut peptides secretin and vasoactive intestinal peptide (VIP), glucagon, and the beta-adrenergic drug isoproterenol, in the presence of guanosine 5'-triphosphate (GTP). With all the stimuli tested, the optimal magnesium concentration was 5 mM, i.e. in excess over the 0.5 mM ATP substrate concentration and 0.01 mM GTP used as cofactor. Under these conditions, half-maximal adenylate cyclase activation with glucagon, secretin, and VIP was achieved at concentrations of 0.5, 0.5 and 1.0 microM, respectively. Data obtained with the secretin (7--27) fragment, a secretin antagonist, indicate that secretin and VIP acted on the same binding sites, which differed from glucagon binding sites. Structural requirements for secretin activation of cardiac adenylate cyclase were evaluated by comparing the potency and efficacy of parent peptides and synthetic analogs. The gastric inhibitory peptide GIP was inactive. When using 13 mono-or bi-substituted analogs, it appeared that amino acids in positions 1, 2, 3, 4 and 6 were of major importance while those in position 5 and 11 played a relatively minor role.
    Pflügers Archiv - European Journal of Physiology 01/1981; 389(1):21-7. · 4.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Membrane adenylate cyclase from rat heart was activated by the two gut peptides secretin and vasoactive intestinal peptide (VIP), glucagon, and the -adrenergic drug isoproterenol, in the presence of guanosine 5-triphosphate (GTP). With all the stimuli tested, the optimal magnesium concentration was 5 mM, i.e. in excess over the 0.5 mM ATP substrate concentration and 0.01 mM GTP used as cofactor. Under these conditions, half-maximal adenylate cyclase activation with glucagon, secretin, and VIP was achieved at concentrations of 0.5, 0.5 and 1.0 M, respectively. Data obtained with the secretin (7–27) fragment, a secretin antagonist, indicate that secretin and VIP acted on the same binding sites, which differed from glucagon binding sites. Structural requirements for secretin activation of cardiac adenylate cyclase were evaluated by comparing the potency and efficacy of parent peptides and synthetic analogs. The gastric inhibitory peptide GIP was inactive. When using 13 mono-or bi-substituted analogs, it appeared that amino acids in positions 1, 2, 3, 4 and 6 were of major importance while those in position 5 and 11 played a relatively minor role.
    Pflügers Archiv - European Journal of Physiology 12/1980; 389(1):21-27. · 4.87 Impact Factor