Article

Water (H2O and D2O) Molar Absorptivity in the 1000–4000 cm−1Range and Quantitative Infrared Spectroscopy of Aqueous Solutions

Department of Pharmacology, Mayo FoundationJ, Rochester, Minnesota, 55905
Analytical Biochemistry 01/1997; DOI: 10.1006/abio.1997.2136

ABSTRACT Water (H2O and D2O) molar absorptivity was measured by Fourier transform infrared transmission spectroscopy in the 1000–4000 cm−1range at 25°C. A series of assembled cells with path lengths from 1.2 to 120.5 μm was used for these measurements. The optimal path length (the path length of aqueous solution at which the IR spectrum of solute, corrected for water absorbance, has the highest signal-to-noise ratio) was calculated for all water absorbance bands. The results presented here show that the optimal path length does not depend on solute properties and is inversely proportional to the solvent (water) molar absorptivity. The maximal signal-to-noise ratio for measurements of IR spectra of aqueous solution in the 1650 cm−1spectral region, of primary interest in biological applications, can be obtained at an optimal cell path lengths of 3–4 μm (H2O) and 40–60 μm (D2O). As an example, the signal-to-noise ratio was calculated as a function of the cell path length for the amide I (H2O) and amide I′ (D2O) bands of an aqueous lysozyme solution. The molar absorptivities of water bands are several orders of magnitude weaker than those of the strongest bands of biological macromolecules in the same spectral regions. High net water absorbance in aqueous solutions is due simply to the very high molar concentration of water. A method is proposed for the quantitative measuring of the path length of the cell which exploits the molar absorptivity of the strongest water bands (stretching vibrations) or of bands which do not overlap with solute absorbance. A path length in the range from ∼0.01 μm to ∼1.0 mm can be determined with high precision using this technique for a samples of known concentration. Problems involved in the proper correction of strong water absorbance in IR spectra of aqueous solutions of biomolecules are discussed, including multiple reflections within the cell, the effects of pH, temperature, and perturbation of water spectral properties by polar solutes, as well as the selection of optimal spectral regions in which one may obtain the most precise absorbance corrections.

0 Bookmarks
 · 
372 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 Å) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp66, Asn70, Lys73, Trp109, and His147) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by α-helices and a cooperative thermal unfolding transition of 49 °C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at ∼355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum (∼6 nm) permitting determination of binding affinities. The unique positioning of Trp208 at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.
    Journal of Biological Chemistry 04/2010; 285(17):13066-13078. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contact electrochemical replication (CER) is a novel pattern replication methodology advanced in this laboratory that offers the unprecedented capability of direct one-step reproduction of monolayer surface patterns consisting of hydrophilic domains surrounded by a hydrophobic monolayer background (hydrophilic @ hydrophobic monolayer patterns), regardless of how the initial "master" pattern was created. CER is based on the direct electrochemical transfer of information, through aqueous electrolyte bridges acting as an information transfer medium, between two organosilane monolayers self-assembled on smooth silicon wafer surfaces. Upon the application of an appropriate voltage bias between a patterned monolayer/silicon specimen playing the role of "stamp" and a monolayer/silicon specimen playing the role of "target", the hydrophilic features of the stamp are copied onto the hydrophobic surface of the target. It is shown that this electrochemical printing process may be implemented under a variety of experimental configurations conducive to the formation of nanometric electrolyte bridges between stamp and target; however, using plain liquid water for this purpose is, in general, not satisfactory because of the high surface tension, volatility, and incompressibility of water. High-fidelity replication of monolayer patterns with variable size of hydrophilic features was achieved by replacing water with a sponge-like hydrogel that is nonvolatile, compressible, and binds specifically to the hydrophilic features of such patterns. Since any copy resulting from the CER process can equally perform as stamp in a subsequent CER step, this methodology offers the rather unique option of multiple parallel reproduction of an initially fabricated master pattern.
    ACS Nano 01/2009; 2(12):2554-68. · 12.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell survival during freezing applications in biomedicine is highly correlated to the temperature history and its dependent cellular biophysical events of dehydration and intracellular ice formation (IIF). Although cell membranes are known to play a significant role in cell injury, a clear correlation between the membrane state and the surrounding intracellular and extracellular water is still lacking. We previously showed that lipid hydration in LNCaP tumor cells is related to cellular dehydration. The goal of this study is to build upon this work by correlating both the phase state of the membrane and the surrounding water to cellular biophysical events in three different mammalian cell types: human prostate tumor cells (LNCaP), human dermal fibroblasts (HDF), and porcine smooth muscle cells (SMC) using Fourier Transform Infrared spectroscopy (FTIR). Variable cooling rates were achieved by controlling the degree of supercooling prior to ice nucleation (-3 degrees C and -10 degrees C) while the sample was cooled at a set rate of 2 degrees C/min. Membranes displayed a highly cooperative phase transition under dehydrating conditions (i.e. NT=-3 degrees C), which was not observed under IIF conditions (NT=-10 degrees C). Spectral analysis showed a consistently greater amount of ice formation during dehydrating vs. IIF conditions in all cell types. This is hypothesized to be due to the extreme loss of membrane hydration in dehydrating cells that is manifested as excess water available for phase change. Interestingly, changes in residual membrane conformational disorder correlate strongly with cellular volumetric decreases as assessed by cryomicroscopy. A strong correlation was also found between the activation energies for freezing induced lyotropic membrane phase change determined using FTIR and the water transport measured by cryomicroscopy. Reduced lipid hydration under dehydration freezing conditions is suggested as one of the likely causes of what has been termed as "solution effects" injury in cryobiology.
    Biochimica et Biophysica Acta 03/2009; 1788(5):945-53. · 4.66 Impact Factor

Full-text

View
1,439 Downloads
Available from
May 31, 2014