Daf-2 Signaling Modifies Mutant SOD1 Toxicity in C. elegans

Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America.
PLoS ONE (Impact Factor: 3.53). 03/2012; 7(3):e33494. DOI: 10.1371/journal.pone.0033494
Source: PubMed

ABSTRACT The DAF-2 Insulin/IGF-1 signaling (IIS) pathway is a strong modifier of Caenorhabditis elegans longevity and healthspan. As aging is the greatest risk factor for developing neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), we were interested in determining if DAF-2 signaling modifies disease pathology in mutant superoxide dismutase 1 (SOD1) expressing C. elegans. Worms with pan-neuronal G85R SOD1 expression demonstrate significantly impaired locomotion as compared to WT SOD1 expressing controls and they develop insoluble SOD1 aggregates. Reductions in DAF-2 signaling, either through a hypomorphic allele or neuronally targeted RNAi, decreases the abundance of aggregated SOD1 and results in improved locomotion in a DAF-16 dependant manner. These results suggest that manipulation of the DAF-2 Insulin/IGF-1 signaling pathway may have therapeutic potential for the treatment of ALS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases represent an increasing burden in our aging society, yet the underlying metabolic factors influencing onset and progression remain poorly defined. The relationship between impaired IGF-1/insulin-like signaling (IIS) and lifespan extension represents an opportunity to investigate the interface of metabolism with age-associated neurodegeneration. Using data sets of established DAF-2/IIS-signaling components in Caenorhabditis elegans, we conducted systematic RNAi screens in worms to select for daf-2-associated genetic modifiers of α-synuclein misfolding and dopaminergic neurodegeneration, two clinical hallmarks of Parkinson's disease. An outcome of this strategy was the identification of GPI-1/GPI, an enzyme in glucose metabolism, as a daf-2-regulated modifier that acts independent of the downstream cytoprotective transcription factor DAF-16/FOXO to modulate neuroprotection. Subsequent mechanistic analyses using Drosophila and mouse primary neuron cultures further validated the conserved nature of GPI neuroprotection from α-synuclein proteotoxicity. Collectively, these results support glucose metabolism as a conserved functional node at the intersection of proteostasis and neurodegeneration.
    Cell Metabolism 05/2014; 20(1). DOI:10.1016/j.cmet.2014.04.017 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer's disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
    Frontiers in Genetics 09/2014; 5:279. DOI:10.3389/fgene.2014.00279
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Many human diseases result from a failure of a single protein to achieve the correct folding and tertiary conformation. These so-called 'conformational diseases' involve diverse proteins and distinctive cellular pathologies. They all engage the proteostasis network (PN), to varying degrees in an attempt to mange cellular stress and restore protein homeostasis. The insulin/insulin-like growth factor signaling (IIS) pathway is a master regulator of cellular stress response, which is implicated in regulating components of the PN. Areas covered: This review focuses on novel approaches to target conformational diseases. The authors discuss the evidence supporting the involvement of the IIS pathway in modulating the PN and regulating proteostasis in Caenorhabditis elegans. Furthermore, they review previous PN and IIS drug screens and explore the possibility of using C. elegans for whole organism-based drug discovery for modulators of IIS-proteostasis pathways. Expert opinion: An alternative approach to develop individualized therapy for each conformational disease is to modulate the global PN. The involvement of the IIS pathway in regulating longevity and response to a variety of stresses is well documented. Increasing data now provide evidence for the close association between the IIS and the PN pathways. The authors believe that high-throughput screening campaigns, which target the C. elegans IIS pathway, may identify drugs that are efficacious in treating numerous conformational diseases.
    Expert Opinion on Drug Discovery 07/2014; 9(9):1-12. DOI:10.1517/17460441.2014.930125 · 3.47 Impact Factor

Preview (3 Sources)

Available from