Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism.

Department of Biochemistry, Universidad Autónoma de Madrid-UAM, Madrid, Spain.
PLoS ONE (Impact Factor: 3.53). 03/2012; 7(3):e32989. DOI: 10.1371/journal.pone.0032989
Source: PubMed

ABSTRACT Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intrauterine growth restriction (IUGR) is a common complication of pregnancy whereby the fetus fails to achieve its genetic growth potential. Malformation of the placental vasculature is observed in IUGR and may be due to the development of the placenta in a chronically hypoxic environment. Recently, we identified that the predominant stromal cells in the angiogenic zones of the placenta are fibrocyte-like cells. The conditioned medium from fibrocyte-like cells (FcCM) has been shown to stimulate angiogenesis in vitro. Thus, we hypothesized that FcCM from IUGR cells would have a reduced ability to stimulate angiogenesis and that chronic hypoxia would decrease the ability of both normal and IUGR fibrocyte-like cells to stimulate angiogenesis. IUGR FcCM had a reduced ability to stimulate endothelial tubule-like structure formation and an increased ability to stimulate endothelial migration compared with normal FcCM. However, normal and IUGR FcCM produced in chronic hypoxia did not alter endothelial proliferation, migration, or tubule-like structure formation. IUGR FcCM was found to have reduced levels of the pro-angiogenic cytokine IL-8 and increased levels of the anti-angiogenic factors activin-A and pigment epithelium-derived growth factor. Thus, alterations in the ability of IUGR fibrocyte-like cells to stimulate angiogenesis may contribute to the development of vascular malformation in IUGR, but in vitro these changes cannot be attributed to a chronically hypoxic environment.
    American Journal Of Pathology 07/2013; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.
    Seminars in Cancer Biology 07/2013; · 9.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor superfamily, has potent anti-metastatic effects in cutaneous melanoma through its direct actions on endothelial and melanoma cells. Here we show that PEDF expression positively correlates with microphthalmia-associated transcription factor (MITF) in melanoma cell lines and human samples. High PEDF and MITF expression is characteristic of low aggressive melanomas classified according to molecular and pathological criteria, whereas both factors are decreased in senescent melanocytes and naevi. Importantly, MITF silencing down-regulates PEDF expression in melanoma cell lines and primary melanocytes, suggesting that the correlation in the expression reflects a causal relationship. In agreement, analysis of Chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) data sets revealed three MITF binding regions within the first intron of SERPINF1, and reporter assays demonstrated that the binding of MITF to these regions is sufficient to drive transcription. Finally, we demonstrate that exogenous PEDF expression efficiently halts in vitro migration and invasion, as well as in vivo dissemination of melanoma cells induced by MITF silencing. In summary, these results identify PEDF as a novel transcriptional target of MITF and support a relevant functional role for the MITF-PEDF axis in the biology of melanoma.
    Neoplasia (New York, N.Y.) 06/2014; · 5.40 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014