Article

Large Membrane Domains in Hair Bundles Specify Spatially Constricted Radixin Activation

Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 03/2012; 32(13):4600-9. DOI: 10.1523/JNEUROSCI.6184-11.2012
Source: PubMed

ABSTRACT The plasma membrane of vertebrate hair bundles interacts intimately with the bundle cytoskeleton to support mechanotransduction and homeostasis. To determine the membrane composition of bundles, we used lipid mass spectrometry with purified chick vestibular bundles. While the bundle glycerophospholipids and acyl chains resemble those of other endomembranes, bundle ceramide and sphingomyelin nearly exclusively contain short-chain, saturated acyl chains. Confocal imaging of isolated bullfrog vestibular hair cells shows that the bundle membrane segregates spatially into at least three large structural and functional domains. One membrane domain, including the stereocilia basal tapers and ∼1 μm of the shaft, the location of the ankle links, is enriched in the lipid phosphatase PTPRQ (protein tyrosine phosphatase Q) and polysialylated gangliosides. The taper domain forms a sharp boundary with the shaft domain, which contains the plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]; moreover, a tip domain has elevated levels of cholesterol, PMCA2, and PI(4,5)P(2). Protein mass spectrometry shows that bundles from chick vestibular hair cells contain a complete set of proteins that transport, synthesize, and degrade PI(4,5)P(2). The membrane domains have functional significance; radixin, essential for hair-bundle stability, is activated at the taper-shaft boundary in a PI(4,5)P(2)-dependent manner, allowing assembly of protein complexes at that site. Membrane domains within stereocilia thus define regions within hair bundles that allow compartmentalization of Ca(2+) extrusion and assembly of protein complexes at discrete locations.

0 Followers
 · 
132 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1-100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca(2+); two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca(2+) influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca(2+) also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer.
    Physiological Reviews 07/2014; 94(3):951-986. DOI:10.1152/physrev.00038.2013 · 29.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.
    PLoS ONE 09/2014; 9(9):e108646. DOI:10.1371/journal.pone.0108646 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A force-conveying role of the lipid membrane across various mechanoreceptors is now an accepted hypothesis. However, such a mechanism is still not fully understood for mechanotransduction in the hair bundle of auditory sensory hair cells. A major goal of this theoretical assessment was to investigate the role of the lipid membrane in auditory mechanotransduction, especially in generating nonlinear bundle force versus displacement measurements, one of the main features of auditory mechanotransduction. To this end, a hair bundle model that generates lipid membrane tented deformation in the stereocilia was developed. A computational analysis of the model not only reproduced nonlinear bundle force measurements but also generated membrane energy that is potentially sufficient to activate the mechanosensitive ion channel of the hair cell. In addition, the model provides biophysical insight into 1) the likelihood that the channel must be linked in some way to the tip link; 2) how the interplay of the bending and stretching of the lipid bilayer may be responsible for the nonlinear force versus displacement response; 3) how measurements of negative stiffness may be a function of the rotational stiffness of the rootlets; and 4) how the standing tension of the tip link is required to interpret migration of the nonlinear force versus displacement and activation curves. These are all features of hair cell mechanotransduction, but the underlying biophysical mechanism has proved elusive for the last three decades.
    Biophysical Journal 02/2015; 108(3). DOI:10.1016/j.bpj.2014.12.029 · 3.83 Impact Factor

Full-text

Download
55 Downloads
Available from
May 23, 2014