Article

A gamma-Tocopherol-Rich Mixture of Tocopherols Maintains Nrf2 Expression in Prostate Tumors of TRAMP Mice via Epigenetic Inhibition of CpG Methylation

Department of Pharmaceutics, Center for Cancer Prevention Research, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
Journal of Nutrition (Impact Factor: 4.23). 03/2012; 142(5):818-23. DOI: 10.3945/jn.111.153114
Source: PubMed

ABSTRACT Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays a pivotal role in maintaining cellular redox homeostasis and eliminating reactive toxic species. Nrf2 is epigenetically suppressed due to CpG hypermethylation in prostate tumors from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We previously showed that dietary feeding of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) suppressed prostate tumorigenesis in TRAMP mice associated with higher Nrf2 protein expression. We hypothesized that γ-TmT may maintain Nrf2 through epigenetic inhibition of promoter CpG methylation. In this study, 8-wk-old male TRAMP mice were fed 0.1% γ-TmT or a control diet for 16 wk. The methylation in the Nrf2 promoter was inhibited in the prostate of the γ-TmT group compared with the control group. Protein expressions of DNA methyltransferase (DNMT), including DNMT1, DNMT3A, and DNMT3B, were lower in the prostate of the γ-TmT group than in the controls. TRAMP-C1 cells were treated with 30 μmol/L of γ-TmT or blank medium for 5 d. The methylation in the Nrf2 promoter was inhibited in the γ-TmT-treated cells compared with the untreated cells at d 5, and mRNA and protein expressions of Nrf2 and NAD(P)H:quinone oxidoreductase 1 were higher. Interestingly, only DNMT3B was inhibited in the γ-TmT-treated cells compared with the untreated cells. In the aggregate, our findings demonstrate that γ-TmT could inhibit CpG methylation in the Nrf2 promoter in the prostate of TRAMP mice and in TRAMP-C1 cells, which might lead to higher Nrf2 expression and potentially contribute to the prevention of prostate tumorigenesis in this TRAMP model.

Free full text is available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327740/

Download full-text

Full-text

Available from: Constance Lay Lay Saw, Jul 03, 2015
0 Followers
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Oxidative stress plays an important role in diabetes-induced vascular inflammation and pathogenesis. Nuclear factor E2-related factor-2 (Nrf2) is a transcription factor orchestrating antioxidant and cyto-protective responses to oxidative stress. In the present study, we tested whether sulforaphane (SFN) can protect the aorta from diabetes and, if so, whether the aortic protection is associated with up-regulation of Nrf2 and its down-stream antioxidants. METHODS: Type 1 diabetes was induced in FVB mice by multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with or without SFN at 0.5 mg/kg daily in five days of each week for three months. At the end of 3 months treatment of SFN one set of mice were sacrificed to perform the experimental measurements. The second set of both diabetic and control mice were aged for additional 3 months without further SFN treatment and then sacrificed to perform the experimental measurements. Aortas from these mice were assessed for fibrosis, inflammation, oxidative damage, and Nrf2 expression and transcription by immunohistochemical staining and real-time PCR method, respectively RESULTS: Diabetes induced significant increases in oxidative stress and inflammation in the aorta at both 3 and 6 months, and fibrotic response at 6 months. SFN completely prevented these diabetic pathogenic changes and also significantly up-regulated the expression of Nrf2 and its down-stream antioxidants. CONCLUSIONS: These results suggest that diabetes-induced aortic fibrosis, inflammation, and oxidative damage can be prevented by SFN. The aortic protection from diabetes by SFN was associated with the up-regulation of Nrf2 and its downstream antioxidants.
    Nutrition & Metabolism 09/2012; 9(1):84. DOI:10.1186/1743-7075-9-84
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence suggests epigenetic alteration is involved during the development and progression of prostate cancer. Previously, we found Nrf2, a key regulator of cellular antioxidant defense systems, was silenced through epigenetic mechanism during tumorigenesis in vivo TRAMP mice and in vitro TRAMP C1 cells. Sulforaphane (SFN) in cruciferous vegetable has been demonstrated to be a potent cancer prevention agent for years. The aim of this study is to investigate the potential of SFN to restore Nrf2 expression in TRAMP C1 cells through epigenetic modifications. Bisulfite genomic sequencing results indicated that SFN treatment led to demethylation of the first 5 CpGs in the promoter region of the Nrf2 gene in TRAMP C1 cells. Using methylation DNA immunoprecipitation (MeDIP) assay, SFN significantly reduced the ratio of anti-mecyt antibody binding to the Nrf2 promoter containing the first 5 CpGs. SFN increased mRNA and protein expressions of Nrf2 and Nrf2 downstream target gene NQO-1. In addition, SFN decreased the protein levels of DNMT1 and DNMT3a. SFN treatment also attenuated the protein expression levels of HDACs 1, 4, 5, and 7 while increased the level of active chromatin marker acetyl-Histone 3 (Ac-H3). SFN treatments also increased chromatin-immunoprecipitated DNA of Nrf2 gene promoter using anti-Ac-H3 antibody. Taken together, our current study shows that SFN regulates Nrf2's CpGs demethylation and reactivation in TRAMP C1 cells, suggesting SFN may exert its chemopreventive effect in part via epigenetic modifications of Nrf2 gene with subsequent induction of its downstream anti-oxidative stress pathway.
    Biochemical pharmacology 02/2013; 85(9). DOI:10.1016/j.bcp.2013.02.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear factor that controls the expression and coordinated induction of a battery of genes which encode detoxifying enzymes, drug transporters (MRPs), anti-apoptotic proteins and proteasomes. In the basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as an adapter for Cul3/Rbx1 E3 ubiquitin ligase mediated degradation of Nrf2. Chemicals including antioxidants, tocopherols including α-tocopherol (vitamin E), phytochemicals and radiations antagonize the Nrf2:INrf2 interaction and leads to the stabilization and activation of Nrf2. The signaling events involve pre-induction, induction and post-induction responses that tightly control Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate unknown tyrosine kinase(s) in a pre-induction response which phosphorylates specific residues on Nrf2 negative-regulators, INrf2, Fyn and Bach1, leading to their nuclear export, ubiquitination and degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic modification of INrf2cysteine151 followed by PKC phosphorylation of Nrf2serine40 in the induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and translocates to the nucleus resulting in a coordinated activation of gene expression. This is followed by a post-induction response that controls the 'switching off' of Nrf2-activated gene expression. GSK3β under the control of AKT and PI3K, phosphorylates Fyn leading to Fyn nuclear localization. Fyn phosphorylates Nrf2Y568 resulting in nuclear export and degradation of Nrf2. The activation and repression of Nrf2 provides protection against oxidative/electrophilic stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes oncogenesis and drug resistance.
    Free Radical Biology and Medicine 02/2013; 66. DOI:10.1016/j.freeradbiomed.2013.02.008