Article

A gamma-Tocopherol-Rich Mixture of Tocopherols Maintains Nrf2 Expression in Prostate Tumors of TRAMP Mice via Epigenetic Inhibition of CpG Methylation

Department of Pharmaceutics, Center for Cancer Prevention Research, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
Journal of Nutrition (Impact Factor: 4.23). 03/2012; 142(5):818-23. DOI: 10.3945/jn.111.153114
Source: PubMed

ABSTRACT Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays a pivotal role in maintaining cellular redox homeostasis and eliminating reactive toxic species. Nrf2 is epigenetically suppressed due to CpG hypermethylation in prostate tumors from the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We previously showed that dietary feeding of a γ-tocopherol-rich mixture of tocopherols (γ-TmT) suppressed prostate tumorigenesis in TRAMP mice associated with higher Nrf2 protein expression. We hypothesized that γ-TmT may maintain Nrf2 through epigenetic inhibition of promoter CpG methylation. In this study, 8-wk-old male TRAMP mice were fed 0.1% γ-TmT or a control diet for 16 wk. The methylation in the Nrf2 promoter was inhibited in the prostate of the γ-TmT group compared with the control group. Protein expressions of DNA methyltransferase (DNMT), including DNMT1, DNMT3A, and DNMT3B, were lower in the prostate of the γ-TmT group than in the controls. TRAMP-C1 cells were treated with 30 μmol/L of γ-TmT or blank medium for 5 d. The methylation in the Nrf2 promoter was inhibited in the γ-TmT-treated cells compared with the untreated cells at d 5, and mRNA and protein expressions of Nrf2 and NAD(P)H:quinone oxidoreductase 1 were higher. Interestingly, only DNMT3B was inhibited in the γ-TmT-treated cells compared with the untreated cells. In the aggregate, our findings demonstrate that γ-TmT could inhibit CpG methylation in the Nrf2 promoter in the prostate of TRAMP mice and in TRAMP-C1 cells, which might lead to higher Nrf2 expression and potentially contribute to the prevention of prostate tumorigenesis in this TRAMP model.

Free full text is available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327740/

Full-text

Available from: Constance Lay Lay Saw, May 30, 2015
0 Followers
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing numbers of natural products have been found to possess anticancer effects. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator of the antioxidative stress response, and our previous studies found that epigenetic modification of the Nrf2 gene appears to be a critical mechanism. Salvia miltiorrhiza, a Chinese herbal medicine widely used in Asian countries, has been shown to possess anticancer and antioxidant effects. Tanshinone IIA (TIIA), an active component in S. miltiorrhiza, has been reported to activate Nrf2 pathway. The objective of this study was to investigate the epigenetic regulation of Nrf2 by TIIA in mouse skin epidermal JB6 cells and the functional consequences for cell transformation. TIIA was found to induce antioxidant response element-luciferase and upregulate the mRNA and protein levels of Nrf2 and Nrf2 downstream target genes HO-1 and NQO-1. TIIA decreased the colony formation of JB6 cells by approximately 80%. TIIA decreased the protein levels of DNMT1, DNMT3a, DNMT3b, and HDAC3 and inhibited the enzymatic activity of HDACs. Bisulfite genomic sequencing indicated that TIIA demethylated the first five CpGs in the promoter region of the Nrf2 gene. Chromatin immunoprecipitation assays showed that TIIA treatment increased the recruitment of RNA polymerase II at Nrf2 transcription start site but had limited effects on enrichment of Ac-H3 in Nrf2 promoter. Taken together, our results show that TIIA activates the Nrf2 signaling pathway and induces epigenetic demethylation of the CpGs of Nrf2. The epigenetic reactivation of the Nrf2 signaling pathway by TIIA could potentially contribute to the attenuation of JB6 cellular transformation and anticancer effects.
    The AAPS Journal 10/2014; 16(6). DOI:10.1208/s12248-014-9666-8 · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, the effects of δ-tocopherol (δ-T) on growth and apoptosis of human prostate cancer cells were determined and compared with that of α-tocopherol (α-T), a commonly used form of vitamin E. Treatment of human prostate cancer cells with δ-T resulted in strong growth inhibition and apoptosis stimulation while the effects of α-T were modest. The strong effects of δ-T on the cells were associated with suppression of androgen receptor (AR) activity and decreased level of prostate specific antigen (PSA) that is a down-stream target of the AR signaling. In the in vivo study, we found that δ-T had a more potent inhibitory effect on the formation and growth of prostate xenograft tumors than α-T. Moreover, δ-T inhibited proliferation and stimulated apoptosis in the tumors. The present study identified δ-T as a better form of vitamin E than α-T for future clinical studies of prostate cancer prevention.
    Journal of Agricultural and Food Chemistry 10/2014; 62(44). DOI:10.1021/jf504058f · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal life is characterized by a tremendous plasticity and ability to respond to various environmental and lifestyle factors, including maternal nutrition. Identification of the role of dietary factors that can modulate and reshape the cellular epigenome during development, including methyl group donors (e.g., folate, choline) and bioactive compounds (e.g., polyphenols) is of great importance; however, there is insufficient knowledge of a particular effect of each type of modulator and/or their combination on fetal life. To enhance the quality and safety of food products for proper fetal health and disease prevention in later life, a better understanding of the underlying mechanisms of dietary epigenetic modulators during the critical prenatal period is necessary. This review focuses on the influence of maternal dietary components on DNA methylation, histone modification, and microRNAs, and summarizes current knowledge of the effect and importance of dietary components on epigenetic mechanisms that control the proper expression of genetic information. Evidence reveals that some components in the maternal diet can directly or indirectly affect epigenetic mechanisms. Understanding the underlying mechanisms of how early-life nutritional environment affects the epigenome during development is of great importance for the successful prevention of adult chronic diseases through optimal maternal nutrition. Keywords: maternal diet; epigenetics; programming; DNA methylation; histone; microRNAs
    Nutrients 04/2015; 27(4):2748-2770. DOI:10.3390/nu7042748 · 3.15 Impact Factor