Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies.

Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.
Advances in Experimental Medicine and Biology (Impact Factor: 2.01). 01/2012; 741:171-86. DOI: 10.1007/978-1-4614-2098-9_12
Source: PubMed

ABSTRACT Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great promise in replacing non-functioning or lost cells and regenerating diseased and damaged tissues. The presence of a small subpopulation of adult stem/progenitor cells in most tissues and organs provides the possibility of stimulating their in vivo differentiation, or of using their ex vivo expanded progenies for cell-replacement and gene therapies with multiple applications in humans without a high-risk of graft rejection and major side effects. Among the diseases that could be treated by adult stem cell-based therapies are hematopoietic and immune disorders, multiple degenerative disorders such as Parkinson's and Alzheimer's diseases, Types 1 and 2 diabetes mellitus as well as skin, eye, liver, lung, tooth and cardiovascular disorders. In addition, a combination of the current cancer treatments with an adjuvant treatment consisting of an autologous or allogeneic adult stem/progenitor cell transplantation also represents a promising strategy for treating and even curing diverse aggressive, metastatic, recurrent and lethal cancers. In this chapter, we reviewed the most recent advancements on the characterization of phenotypic and functional properties of adult stem/progenitor cell types found in bone marrow, heart, brain and other tissues and discussed their therapeutic implications in the stem cell-based transplantation therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent paradigm in the field of cancer defines its origin from a small population of fast growing cells known as cancer stem cells (CSCs), and they are mainly responsible for disease aggressiveness, drug resistance and tumor relapse. The existence of CSCs has been proven in different types of cancer and possesses characteristic expression of a wide array of cell surface markers specific to the type of cancer. CSCs have been isolated and enriched using several surface markers in different cancer types. Self-renewal, drug resistance and the ability to transition from epithelial to mesenchymal phenotype are the major features attributed to this fraction of mutated stem cells. The CSC hypothesis proposes that these CSCs mimic stem cells by sharing similar pathways, such as Wnt, SHH, Notch and others. Further, the niche, which in this case is the tumor microenvironment, plays a very important role in the maintenance of CSCs. Altogether, this emerging field of research on CSCs is expected to unveil answers to the most difficult issues of one of the most dreadful diseases called cancer.
    04/2013; 3(2):113-120. DOI:10.1007/s13346-012-0095-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphene is a flat monolayer of carbon atoms, arranged in a two-dimensional hexagonal structure, with extraordinary electrical, thermal, and physical properties. Moreover, the molecular structure of graphene can be chemically modified with molecules of interest to promote the development of high-performance devices. Although carbon derivatives have been extensively employed in industry and electronics, their use in regenerative medicine is still in an early phase. Study prove that graphene is highly biocompatible, has low toxicity and a large dosage loading capacity. This review describes the ability of graphene and its related materials to induce stem cells differentiation into osteogenic, neuronal, and adipogenic lineages.
    Journal of Translational Medicine 10/2014; 12(1):296. DOI:10.1186/s12967-014-0296-9 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). Methods BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. Results PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. Conclusion BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.
    PLoS ONE 10/2014; 9(10):e107891. DOI:10.1371/journal.pone.0107891 · 3.53 Impact Factor


Available from