Local generation of glia is a major astrocyte source in postnatal cortex.

Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, 1550 4th Street, San Francisco, California 94158, USA.
Nature (Impact Factor: 42.35). 03/2012; 484(7394):376-80. DOI: 10.1038/nature10959
Source: PubMed

ABSTRACT Glial cells constitute nearly 50% of the cells in the human brain. Astrocytes, which make up the largest glial population, are crucial to the regulation of synaptic connectivity during postnatal development. Because defects in astrocyte generation are associated with severe neurological disorders such as brain tumours, it is important to understand how astrocytes are produced. Astrocytes reportedly arise from two sources: radial glia in the ventricular zone and progenitors in the subventricular zone, with the contribution from each region shifting with time. During the first three weeks of postnatal development, the glial cell population, which contains predominantly astrocytes, expands 6-8-fold in the rodent brain. Little is known about the mechanisms underlying this expansion. Here we show that a major source of glia in the postnatal cortex in mice is the local proliferation of differentiated astrocytes. Unlike glial progenitors in the subventricular zone, differentiated astrocytes undergo symmetric division, and their progeny integrate functionally into the existing glial network as mature astrocytes that form endfeet with blood vessels, couple electrically to neighbouring astrocytes, and take up glutamate after neuronal activity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies have been conducted to delineate the early development of different functional networks, based on measuring the temporal synchronization of spontaneous blood oxygenation level-dependent (BOLD) signals acquired using resting state functional MRI (rsfMRI). However, little attention has been paid to the change of the frequency properties of these signals during early brain development. Such frequency properties may reflect important physiological changes and potentially have significant cognitive consequences. In this study, leveraging a large (N = 86 subjects), longitudinal sample of human infants scanned during the first two years of life, we aimed to specifically delineate the developmental changes of the frequency characteristics of spontaneous BOLD signals. Both whole-brain and network-level examinations were carried out and the frequency-behavior relationship was explored. Our results revealed a clear right-ward shift of BOLD signal frequency during the first year of life. Moreover, the power at the peak-frequency for sensorimotor and lateral visual networks correlates with domain-specific Mullen Scales in 1-year-olds, suggesting the behavioral significance of the BOLD signal frequency during infancy. Findings from this study shed light into early functional brain development and provide a new perspective for future searches for functional developmental abnormalities.
    Developmental Cognitive Neuroscience 11/2014; 12. DOI:10.1016/j.dcn.2014.10.004 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radial glial (RG) cells serve as stem cells to produce new born neurons and scaffolds for neuronal migration during corticogenesis. After neurogenesis and migration are completed, most RG cells transform into astrocytes. However, the mechanisms that determine how RG cells are transformed into astrocytes are not well understood. Using nestin as a specific marker for both RG cells and astrocytes, we found that loss of LXRβ caused a reduction in the level of RG fibers and increase in the astrocytes. At the same time, we showed that the level of brain lipid-binding protein (BLBP), a RG-specific protein, was lower in the LXRβ knockout (LXRβ−/−) mice than in the wild type (WT) littermates from E18.5 to P14, a time period when most of RG cells are transformed into astrocytes. However, loss of LXRβ induced significant increase in the number of GFAP labeled astrocytes in the cerebral cortex. An increase of the transformation of RG cells into astrocytes in LXRβ−/− mice was further confirmed by the increased percentage of BLBP and GFAP double stained cells in the total BLBP positive cells of the Layer I and Layer V-VI. TGF-β1 and Smad4 are thought to be involved in the transformation of RG cells into astrocytes. The expression levels of TGF-β1mRNA and Smad4 mRNA were significantly higher in the cerebral cortex of LXRβ−/− mice than that in the WT littermates at P2 and P7, but by P10 and P14, mRNA levels had normalized and no differences were observed between WT and LXRβ−/− mice. Taken together, our findings suggest that loss of LXRβ accelerates the transformation of RG cells into astrocytes and that this acceleration may be correlated to higher levels TGF-β1 and Smad4 in the cerebral cortex between P2-P7.
    Neurochemistry International 05/2014; DOI:10.1016/j.neuint.2014.03.009 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.
    Brain Structure and Function 04/2014; DOI:10.1007/s00429-014-0768-y · 4.57 Impact Factor


Available from