The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria

Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94158, USA.
Nature (Impact Factor: 42.35). 03/2012; 484(7395):538-41. DOI: 10.1038/nature10965
Source: PubMed

ABSTRACT Protein synthesis by ribosomes takes place on a linear substrate but at non-uniform speeds. Transient pausing of ribosomes can affect a variety of co-translational processes, including protein targeting and folding. These pauses are influenced by the sequence of the messenger RNA. Thus, redundancy in the genetic code allows the same protein to be translated at different rates. However, our knowledge of both the position and the mechanism of translational pausing in vivo is highly limited. Here we present a genome-wide analysis of translational pausing in bacteria by ribosome profiling--deep sequencing of ribosome-protected mRNA fragments. This approach enables the high-resolution measurement of ribosome density profiles along most transcripts at unperturbed, endogenous expression levels. Unexpectedly, we found that codons decoded by rare transfer RNAs do not lead to slow translation under nutrient-rich conditions. Instead, Shine-Dalgarno-(SD)-like features within coding sequences cause pervasive translational pausing. Using an orthogonal ribosome possessing an altered anti-SD sequence, we show that pausing is due to hybridization between the mRNA and 16S ribosomal RNA of the translating ribosome. In protein-coding sequences, internal SD sequences are disfavoured, which leads to biased usage, avoiding codons and codon pairs that resemble canonical SD sites. Our results indicate that internal SD-like sequences are a major determinant of translation rates and a global driving force for the coding of bacterial genomes.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribosome profiling is a powerful method for globally assessing the activity of ribosomes in a cell. Despite its application in many organisms, ribosome profiling studies in bacteria have struggled to obtain the resolution necessary to precisely define translational pauses. Here, we report improvements that yield much higher resolution in E. coli profiling data, enabling us to more accurately assess ribosome pausing and refine earlier studies of the impact of polyproline motifs on elongation. We comprehensively characterize pausing at proline-rich motifs in the absence of elongation factor EFP. We find that only a small fraction of genes with strong pausing motifs have reduced ribosome density downstream, and we identify features that explain this phenomenon. These features allow us to predict which proteins likely have reduced output in the efp-knockout strain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 04/2015; 24(1). DOI:10.1016/j.celrep.2015.03.014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NADPH is an essential cofactor for the biosynthesis of several high-value chemicals, including isoprenoids, fatty acid-based fuels, and biopolymers. Tunable control over all potentially rate-limiting steps, including the NADPH regeneration rate, is crucial to maximizing production titers. We have rationally engineered a synthetic version of the Entner-Doudoroff pathway from Zymomonas mobilis that increased the NADPH regeneration rate in E. coli MG1655 by 25-fold. To do this, we combined systematic design rules, biophysical models, and computational optimization to design synthetic bacterial operons expressing the 5-enzyme pathway, while eliminating undesired genetic elements for maximum expression control. NADPH regeneration rates from genome-integrated pathways were estimated using a NADPH-binding fluorescent reporter and by the productivity of a NADPH-dependent terpenoid biosynthesis pathway. We designed and constructed improved pathway variants by employing the RBS Library Calculator to efficiently search the 5-dimensional enzyme expression space and by performing 40 cycles of MAGE for site-directed genome mutagenesis. 624 pathway variants were screened using a NADPH-dependent blue fluorescent protein, and 22 were further characterized to determine the relationship between enzyme expression levels and NADPH regeneration rates. The best variant exhibited 25-fold higher normalized mBFP levels when compared to wild-type strain. Combining the synthetic Entner-Doudoroff pathway with an optimized terpenoid pathway further increased the terpenoid titer by 97%. Copyright © 2015. Published by Elsevier Inc.
    Metabolic Engineering 03/2015; 29. DOI:10.1016/j.ymben.2015.03.001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genes are organized into operons in procaryote, and these genes in one operon generally have related functions. However, genes in the same operon are usually not equally expressed, and the ratio needs to be fine-tuned for specific functions. We examine the difference of gene expression noise and correlation when tuning the expression level at the transcriptional or translational level in a bicistronic operon driven by a constitutive or a two-state promoter. We get analytic results for the noise and correlation of gene expression levels, which is confirmed by our stochastic simulations. Both the noise and the correlation of gene expressions in an operon with a two-state promoter are higher than in an operon with a constitutive promoter. Premature termination of mRNA induced by transcription terminator in the intergenic region or changing translation rates can tune the protein ratio at the transcriptional level or at the translational level. We find that gene expression correlation between promoter-proximal and promoter-distal genes at the protein level decreases as termination increases. In contrast, changing translation rates in the normal range almost does not alter the correlation. This explains why the translation rate is a key factor of modulating gene expressions in an operon. Our results can be useful to understand the relationship between the operon structure and the biological function of a gene network, and also may help in synthetic biology design.
    Journal of Theoretical Biology 11/2014; 365. DOI:10.1016/j.jtbi.2014.11.002


Available from