A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes

Departments of Physics and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Molecular biology of the cell (Impact Factor: 5.98). 03/2012; 23(10):1986-97. DOI: 10.1091/mbc.E11-11-0961
Source: PubMed

ABSTRACT The respiratory metabolic cycle in budding yeast (Saccharomyces cerevisiae) consists of two phases that are most simply defined phenomenologically: low oxygen consumption (LOC) and high oxygen consumption (HOC). Each phase is associated with the periodic expression of thousands of genes, producing oscillating patterns of gene expression found in synchronized cultures and in single cells of slowly growing unsynchronized cultures. Systematic variation in the durations of the HOC and LOC phases can account quantitatively for well-studied transcriptional responses to growth rate differences. Here we show that a similar mechanism-transitions from the HOC phase to the LOC phase-can account for much of the common environmental stress response (ESR) and for the cross-protection by a preliminary heat stress (or slow growth rate) to subsequent lethal heat stress. Similar to the budding yeast metabolic cycle, we suggest that a metabolic cycle, coupled in a similar way to the ESR, in the distantly related fission yeast, Schizosaccharomyces pombe, and in humans can explain gene expression and respiratory patterns observed in these eukaryotes. Although metabolic cycling is associated with the G0/G1 phase of the cell division cycle of slowly growing budding yeast, transcriptional cycling was detected in the G2 phase of the division cycle in fission yeast, consistent with the idea that respiratory metabolic cycling occurs during the phases of the cell division cycle associated with mass accumulation in these divergent eukaryotes.

Download full-text


Available from: Nikolai Slavov, Jul 01, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is an increasing use of systems biology approaches in both "red" and "white" biotechnology in order to enable medical, medicinal, and industrial applications. The intricate links between genotype and phenotype may be explained through the use of the tools developed in systems biology, synthetic biology, and evolutionary engineering. Biomedical and biotechnological research are among the fields that could benefit most from the elucidation of this complex relationship. Researchers have studied fitness extensively to explain the phenotypic impacts of genetic variations. This elaborate network of dependencies and relationships so revealed are further complicated by the influence of environmental effects that present major challenges to our achieving an understanding of the cellular mechanisms leading to healthy or diseased phenotypes or optimized production yields. An improved comprehension of complex genotype-phenotype interactions and their accurate prediction should enable us to more effectively engineer yeast as a cell factory and to use it as a living model of human or pathogen cells in intelligent screens for new drugs. This review presents different methods and approaches undertaken toward improving our understanding and prediction of the growth phenotype of the yeast Saccharomyces cerevisiae as both a model and a production organism.
    Biotechnology Journal 09/2013; 8(9):1017-34. DOI:10.1002/biot.201300138 · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To survive and proliferate, cells need to coordinate their metabolism, gene expression and cell division. To understand this coordination and the consequences of its failure, we uncoupled biomass synthesis from nutrient signaling by growing, in chemostats, yeast auxotrophs for histidine, lysine, or uracil in excess of natural nutrients (i.e., sources of carbon, nitrogen, sulfur and phosphorus), such that their growth rates were regulated by the availability of their auxotrophic requirements. The physiological and transcriptional responses to growth-rate changes of these cultures differed markedly from the respective responses of prototrophs whose growth-rate is regulated by the availability of natural nutrients. The data for all auxotrophs at all growth rates recapitulated the features of aerobic glycolysis, fermentation despite high oxygen levels in the growth media. In addition, we discovered very wide bimodal distributions of cell sizes, indicating a decoupling between the cell division cycle (CDC) and biomass production. The aerobic glycolysis was reflected in a general signature of anaerobic growth, including substantial reduction in the expression levels of mitochondrial and TCA genes. We also found that the magnitude of the transcriptional growth rate response in the auxotrophs is only 40-50% of the magnitude in prototrophs. Furthermore, the auxotrophic cultures express autophagy genes at substantially lower levels, which likely contributes to their lower viability. Our observations suggest that a growth rate signal, which is a function of the abundance of essential natural nutrients, regulates fermentation/respiration, the growth rate response, and the CDC.
    Molecular biology of the cell 11/2012; DOI:10.1091/mbc.E12-09-0670 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
    PLoS ONE 03/2013; 8(3):e58266. DOI:10.1371/journal.pone.0058266 · 3.53 Impact Factor