Methylation and Expression Analyses of the 7q Autism Susceptibility Locus Genes MEST, COPG2, and TSGA14 in Human and Anthropoid Primate Cortices

Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.
Cytogenetic and Genome Research (Impact Factor: 1.56). 03/2012; 136(4):278-87. DOI: 10.1159/000337298
Source: PubMed


The autism susceptibility locus on human chromosome 7q32 contains the maternally imprinted MEST and the non-imprinted COPG2 and TSGA14 genes. Autism is a disorder of the 'social brain' that has been proposed to be due to an overbalance of paternally expressed genes. To study regulation of the 7q32 locus during anthropoid primate evolution, we analyzed the methylation and expression patterns of MEST, COPG2, and TSGA14 in human, chimpanzee, Old World monkey (baboon and rhesus macaque), and New World monkey (marmoset) cortices. In all human and anthropoid primate cortices, the MEST promoter was hemimethylated, as expected for a differentially methylated imprinting control region, whereas the COPG2 and TSGA14 promoters were completely demethylated, typical for transcriptionally active non-imprinted genes. The MEST gene also showed comparable mRNA expression levels in all analyzed species. In contrast, COPG2 expression was downregulated in the human cortex compared to chimpanzee, Old and New World monkeys. TSGA14 either showed no differential regulation in the human brain compared to chimpanzee and marmoset or a slight upregulation compared to baboon. The human-specific downregulation supports a role for COPG2 in the development of a 'social brain'. Promoter methylation patterns appear to be more stable during evolution than gene expression patterns, suggesting that other mechanisms may be more important for inter-primate differences in gene expression.

Download full-text


Available from: Thomas Haaf, Mar 25, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in-silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis.
    Neurochemistry International 01/2014; 66(1). DOI:10.1016/j.neuint.2014.01.002 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CNTNAP2, one of the largest genes in the human genome, has been linked to human-specific language abilities and neurodevelopmental disorders. Our hypothesis is that epigenetic rather than genetic changes have accelerated the evolution of the human brain. To compare the cortex DNA methylation patterns of human and chimpanzee CNTNAP2 at ultra-high resolution, we combined methylated DNA immunoprecipitation (MeDIP) with NimbleGen tiling arrays for the orthologous gene and flanking sequences. Approximately 1.59 Mb of the 2.51 Mb target region could be aligned and analyzed with a customized algorithm in both species. More than one fifth (0.34 Mb) of the analyzed sequence throughout the entire gene displayed significant methylation differences between six human and five chimpanzee cortices. One of the most striking interspecies differences with 28% methylation in human and 59% in chimpanzee cortex (by bisulfite pyrosequencing) lies in a region 300 bp upstream of human SNP rs7794745 which has been associated with autism and parent-of-origin effects. Quantitative real-time RT PCR revealed that the protein-coding splice variant CNTNAP2-201 is 1.6-fold upregulated in human cortex, compared with the chimpanzee. Transcripts CNTNAP2-001, -002, and -003 did not show skewed allelic expression, which argues against CNTNAP2 imprinting, at least in adult human brain. Collectively, our results suggest widespread cortex DNA methylation changes in CNTNAP2 since the human-chimpanzee split, supporting a role for CNTNAP2 fine-regulation in human-specific language and communication traits.
    Epigenetics: official journal of the DNA Methylation Society 01/2014; 9(4). DOI:10.4161/epi.27689 · 4.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism Spectrum Disorders (ASD) are associated with mutations in a host of genes including a number that function in synaptic transmission. Phelan McDermid Syndrome involves mutations in SHANK3 which encodes a protein that forms a scaffold for glutamate receptors at the synapse. SHANK3 is one of the genes underpins the synaptic hypothesis for ASD. We discuss this hypothesis with a view to the broader context of ASD and with special emphasis on highly penetrant genetic disorders including Shankopathies. We propose a blueprint for near and longer-term goals for fundamental and translational research on Shankopathies. © 2013 Wiley Periodicals, Inc. Develop Neurobiol, 2013.
    Developmental Neurobiology 02/2014; 74(2). DOI:10.1002/dneu.22150 · 3.37 Impact Factor
Show more