Article

Functional expression in Escherichia coli of the tyrosine-inducible tyrosine ammonia-lyase enzyme from yeast Trichosporon cutaneum for production of p-hydroxycinnamic acid

Biochemical and Engineering Sciences, DuPont CR&D, Wilmington, DE 19880, United States
Enzyme and Microbial Technology 01/2007; DOI: 10.1016/j.enzmictec.2007.03.013

ABSTRACT Deamination of aromatic amino acids phenylalanine or tyrosine is accomplished by the phenylalanine/tyrosine ammonia-lyase (PAL/TAL) enzyme. TAL enzyme is of interest since deamination of tyrosine produces p-hydroxycinnamic acid (pHCA), which has potential for a variety of applications. Among nine microorganisms tested for their ability to produce tyrosine-inducible TAL activity, the yeast, Trichosporon cutaneum showed the highest TAL catalytic activity and the lowest PAL/TAL catalytic efficiency ratio (0.8). The enzyme was purified to near homogeneity and its kinetics studied. The native enzyme appears to be a homo-tetramer with a calculated MW of 294 kDa, subunit MW of 73.5 kDa, and a pI of 5.8. When phenylalanine was used as substrate, the Vmax, Kcat and Km were ∼4.0 ± 0.2 μg/min/mg purified enzyme), 588 ± 29 per min and 4.9 ± 0.9 mM, respectively. However, when tyrosine served as the substrate the Vmax and Kcat were 0.59 ± 0.02 μg/min/mg purified enzyme), and 86.7 ± 29 per min, and substrate binding was apparently cooperative (nH ∼ 2.6 ± 0.4), with S0.5 ∼ 0.6 mM. This is the first reported positive cooperativity for a TAL enzyme. Based on the NH2-terminal and partial internal peptide sequences, the cDNA encoding the enzyme was cloned. Sequence analysis of TcTAL showed 56–62% similarity to other fungal PAL/TAL enzymes. High-level expression (∼30% of total soluble protein, based on SDS-PAGE analysis) of the cDNA in Escherichia coli was achieved using the arabinose inducible araB promoter. The recombinant enzyme possessed both PAL and TAL activities, as evident from the presence of both pHCA and CA in the culture medium.

0 Bookmarks
 · 
42 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine ammonia lyase catalyzes the deamination of L: -tyrosine to trans-coumaric acid. A novel tyrosine ammonia lyase-encoding gene, bagA, was cloned and sequenced from bagremycins-producing strain Streptomyces sp. Tü 4128 whose protein product contains a Ala-Ser-Gly segment in the active site. The disruption of the bagA gene abolished trans-coumaric acid and bagremycins production. trans-coumaric acid restored the formation of bagremycin A in the mutant, but not bagremycin B. Thus, trans-coumaric acid is a precursor for biosynthesis of bagremycins and the bagA gene codes for tyrosine ammonia lyase to synthesize trans-coumaric acid. This is a novel bacterial tal gene reported in actinomycetes for the second time and for the first time in a Streptomyces sp.
    Biotechnology Letters 11/2011; 34(2):269-74. · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trichosporon cutaneum phenylalanine ammonia lyase was selected as a model to investigate the dual substrate activity of this family of enzymes. Sequencing of the PAL gene identified an extensive intron region at the N-terminus. Five amino acid residues differing from a prior report were identified. Highest Phe : Tyr activities (1.6 ± 0.3 : 0.4 ± 0.1 μ mol/h g wet weight) were induced by Tyr. The enzyme has a temperature optimum of 32°C and a pH optimum of 8-8.5 and shows no metal cofactor dependence. Michaelis-Menten kinetics (Phe, K m 5.0 ± 1.1 mM) and positive allostery (Tyr, K' 2.4 ± 0.6 mM, Hill coefficient 1.9 ± 0.5) were observed. Anion exchange chromatography gave a purification fold of 50 with 20% yield. The His-Gln motif (substrate selectivity switch region) indicates the enzyme's ability to act on both substrates.
    Enzyme research. 01/2013; 2013:670702.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbes constitute important platforms for the biosynthesis of numerous molecules of pharmaceutical interest such as antitumor, anticancer, antiviral, antihypertensive, antiparasitic, antioxidant, immunological agents, and antibiotics as well as hormones, belonging to various chemical families, for instance, terpenoids, alkaloids, polyphenols, polyketides, amines, and proteins. Engineering microbial factories offers rich opportunities for the production of natural products that are too complex for cost-effective chemical synthesis and whose extraction from their originating plants needs the use of many solvents. Recent progresses that have been made since the millennium beginning with metabolic engineering of microorganisms for the biosynthesis of natural products of pharmaceutical significance will be reviewed.
    BioMed research international. 01/2013; 2013:780145.

Full-text

View
7 Downloads
Available from
Jun 11, 2014