Article

Modeling Jupiter's cloud bands and decks: 2. Distribution and motion of condensates

University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU Oxford, United Kingdom
Icarus (Impact Factor: 2.84). 01/2009; DOI: 10.1016/j.icarus.2008.11.015

ABSTRACT A simple jovian cloud scheme has been developed for the Oxford Planetary Unified model System (OPUS). NH3-ice, NH4SH-solid, H2O-ice and H2O-liquid clouds have been modeled in Southern hemisphere limited area simulations of Jupiter. We found that either three or four of the condensates existed in the model. For a deep atmospheric water abundance close to solar composition, an NH3-ice deck above 0.7 bar, an NH4SH-solid deck above 2.5 bar and a H2O-liquid deck with a base at about 7.5 bar and frozen cloud tops formed. If a depleted deep water abundance is assumed, however, a very compact cloud structure develops, where an H2O-ice cloud forms by direct sublimation above 3 bar. The condensates constitute good tracers of atmospheric motion, and we have confirmed that zonal velocities determined from manual feature tracking in the modeled cloud layers agree reasonably well with the modeled zonal velocities. Dense and elevated clouds form over latitudes with strong atmospheric upwelling and depleted clouds exist over areas with strong downwelling. In the NH3-ice deck this leads to elevated cloud bands over the zones in the domain and thin clouds over the belts, which is consistent with the observationally deduced distribution. Due to changes in the vertical velocity pattern in the deeper atmosphere, the NH4SH-solid and water cloud decks are more uniform. This modeled cloud structure thus includes the possibility of more frequent water cloud observations in belts, as this deeper deck could be more easily detected under areas with thin NH3-ice clouds. Large scale vortices appeared spontaneously in the model and were characterized by elevated NH3-ice clouds, as expected from observations. These eddies leave the most discernible imprint on the lighter condensate particles of the uppermost layer.

0 Followers
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a parametrization of Jovian moist convection based on a heat engine model of moist convection. In comparison to other moist convection schemes, this framework allows the computation of the total available convective energy TCAPE and the corresponding mass flux M as dynamic variables from the mean atmospheric state. The effects of this parametrization have been investigated both analytically and numerically. In agreement with previous numerical experiments and observations, the inclusion of moist convection leads to heat and water vapor transport from the water condensation level into higher altitudes. The time development of the modeled convective events was found to be strongly influenced by a rapid reduction of kinetic energy and a subsequent lowering of the cumulus tower's top in response to convective heating. We have tested the sensitivity of the scheme to different variations in the fractional cloud coverage and under the inclusion of external radiative forcing towards a stable/unstable temperature profile. While the time development of convective events differs in response to these variations, the general moist convective heating and moistening of the upper troposphere was a robust feature observed in all experiments.
    Planetary and Space Science 11/2009; DOI:10.1016/j.pss.2009.05.008 · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The motions of Jupiter’s tropospheric jets and vortices are made visible by its outermost clouds, which are expected to be largely composed of ammonia ice. Several groups have demonstrated that much of this dynamics can be reproduced in the vorticity fields of high-resolution models that, surprisingly, do not contain any clouds. While this reductionist approach is valuable, it has natural limitations. Here we report on numerical simulations that use the EPIC Jupiter model with a realistic ammonia-cloud microphysics module, focusing on how observable ammonia clouds interact with the Great Red Spot (GRS) and Oval BA. Maps of column-integrated ammonia-cloud density in the model resemble visible-band images of Jupiter and potential-vorticity maps. On the other hand, vertical cross sections through the model vortices reveal considerable heterogeneity in cloud density values between pressure levels in the vicinity of large anticyclones, and interestingly, ammonia snow appears occasionally. Away from the vortices, the ammonia clouds form at the levels expected from traditional one-dimensional models, and inside the vortices, the clouds are elevated and thick, in agreement with Galileo NIMS observations. However, rather than gathering slowly into place as a result of Jupiter’s weak secondary circulation, the ammonia clouds instead form high and thick inside the large anticyclones as soon as the cloud microphysics module is enabled. This suggests that any weak secondary circulation that might be present in Jupiter’s anticyclones, such as may arise because of radiative damping of their temperature anomalies, may have little or no direct effect on the altitude or thickness of the ammonia clouds. Instead, clouds form at those locations because the top halves of large anticyclones must be cool for the vortex to be able to fit under the tropopause, which is a primary-circulation, thermal-wind-shear effect of the stratification, not a secondary-circulation thermal feature. A planetary-scale void of ammonia clouds persists in the model southward of -38°-38° planetographic latitude, but may partially reflect the fact that we have not yet included a full complement of vortices, all condensable species or the underlying dry-convective forcing from Jupiter’s interior.
    Icarus 04/2014; 232:141–156. DOI:10.1016/j.icarus.2014.01.005 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Reflected light from a spatially unresolved planet yields unique insight into the overall optical properties of the planet cover. Glories are optical phenomena caused by light that is backscattered within spherical droplets following a narrow distribution of sizes; they are well known on Earth as localised features above liquid clouds. Aims. Here we report the first evidence for a glory in the disk-integrated photometry of Venus and, in turn, of any planet. Methods. We used previously published phase curves of the planet that were reproduced over the full range of phase angles with model predictions based on a realistic description of the Venus atmosphere. We assumed that the optical properties of the planet as a whole can be described by a uniform and stable cloud cover, an assumption that agrees well with observational evidence. Results. We specifically show that the measured phase curves mimic the scattering properties of the Venus upper-cloud micron-sized aerosols, also at the small phase angles at which the glory occurs, and that the glory contrast is consistent with what is expected after multiple scattering of photons. In the optical, the planet appears to be brighter at phase angles of 11-13 deg than at full illumination; it undergoes a maximum dimming of up to 10 percent at phases in between. Conclusions. Glories might potentially indicate spherical droplets and, thus, extant liquid clouds in the atmospheres of exoplanets. A prospective detection will require exquisite photometry at the small planet-star separations of the glory phase angles.
    Astronomy and Astrophysics 06/2014; 566. DOI:10.1051/0004-6361/201423531 · 4.48 Impact Factor