Effects of phencyclidine on [3H]catecholamine and [3H]serotonin uptake in synaptosomal preparations from rat brain

Department of Psychiatry, University of Chicago, Chicago, IL (H.Y.M., R.C.A. and J.M.D.) U.S.A.
Biochemical Pharmacology (Impact Factor: 4.65). 09/1977; 26(15):1435-1439. DOI: 10.1016/0006-2952(77)90370-7

ABSTRACT Phencyclidine inhibited uptake in vitro of [3H]norepinephrine (ic50 0.52 μM), [3H]dopamine (ic50 0.73 μM) and [3H]serotonin (ic50 0.80 μM) in crude synaptosomal preparations from rat brain through a competitive mechanism. Phencyclidine was fairly similar in potency to d-amphetamine and methylphenidate in inhibiting catecholamine uptake but was 8 times more potent than d-amphetamine and 34 times more potent than methylphenidate in inhibiting [3H]serotonin uptake.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The N-methyl-d-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT1A, and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT1A partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5–10 fold greater than those acutely effective to restore NOR following scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.
    The International Journal of Neuropsychopharmacology 11/2013; 16(10):2181-2194. DOI:10.1017/S1461145713000928 · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynorphin A (Dyn A) and related opioid peptides derived from prodynorphin possess a high affinity for kappa opioid receptors, but they also bind to other opioid receptors (mu and delta) as well as to some non-opioid receptor sites. Although the physiological role of these peptides is not well established, recent experimental data pinpoint their particular involvement in physiological and pathophysiological conditions that relate to algesia, spinal cord injury and epilepsy. In this paper, we review data which support the concept that the non-opioid behavioral effects of Dyn A and related endogenous peptides which are observed under these conditions are physiologically and pathophysiologically relevant.
    Journal of psychiatry & neuroscience: JPN 10/1992; 17(3):106-19. · 7.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phencyclidine (PCP) produces many profound effects in the central nervous system. PCP has numerous behavioral and neurochemical effects such as inhibiting the uptake and facilitating the release of dopamine, serotonin, and norepinephrine. PCP also interacts with sigma, mu opioid, muscarinic, and nicotinic receptors. However, the psychotomimetic effects induced by PCP are believed to be mediated by specific PCP receptors, where PCP binds with greater potency than sigma compounds. Electrophysiological, behavioral, and neurochemical evidence strongly suggests that at least some of the many PCP actions result from antagonism of excitatory amino acid-induced responses via PCP receptors. The recent isolation and partial characterization of the alpha and beta endopsychosins and the identification of other endogenous ligands for the PCP and sigma receptors, is another promising area of research in the elucidation of the physiological role of an endogenous PCP and sigma system.
    Molecular Neurobiology 09/1987; 1(3):191-211. DOI:10.1007/BF02936608 · 5.29 Impact Factor