Computer aided diagnosis of ECG data on the least square support vector machine

Department of Electrical and Electronics Engineering, Selcuk University, 42075 Konya, Turkey
Digital Signal Processing 01/2008; DOI:10.1016/j.dsp.2007.05.006
Source: DBLP

ABSTRACT In this paper we describe a technique that has successfully classified arrhythmia from an ECG dataset using a least square support vector machine (LSSVM). LSSVM was applied to the ECG dataset to distinguish between healthy persons and diseased persons (arrhythmia). The LSSVM classifier trained with four train-test parts including a training-to-test split of 50–50%, a training-to-test split of 70–30%, and a training-to-test split of 80–20%. We have used the classification accuracy, sensitivity and specificity analysis, and ROC curves to test the performance of LSSVM classifier on the detection of ECG arrhythmia. The classification accuracies obtained are 100% for all the training-to-test splits. These results show that the proposed method is more promising than previously reported classification techniques. The results suggest that the proposed method can be used to enhance the performance of a new intelligent assistance diagnosis system.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: Classification is an important data mining task in biomedicine. For easy comprehensibility, rules are preferrable to another functions in the analysis of biomedical data. The aim of this work is to use a new fuzzy immune rule-based classification system for a medical diagnosis of a cardiovascular disease. In this study, fuzzy immune approach (FIA), which can be improved by ours, is a new method and firstly, it is applied to ECG dataset. The performance of the proposed approach, in terms of classification accuracy, ROC curves, and area under the ROC curve (AUC) was compared with traditional classifier schemes: C4.5, Naïve Bayes, KStar, Meta END, and ANN. The classification accuracies and AUC statistics of FIA for the data sets used are the highest among the classifiers reported on the UCI website and other classifiers used for related problems and tested by cross validation. KeywordsMachine learning–Fuzzy logic–Artificial immune system–Data mining
    04/2011: pages 265-274;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest.
    The Scientific World Journal 01/2013; 2013:769639. · 1.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.
    Computational and Mathematical Methods in Medicine 01/2013; 2013:453402. · 0.79 Impact Factor