Article

Erythropoiesis in the Rps19 disrupted mouse: Analysis of erythropoietin response and biochemical markers for Diamond-Blackfan anemia

Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
Blood Cells Molecules and Diseases (Impact Factor: 2.33).

ABSTRACT The human ribosomal protein S19 gene (RPS19) is mutated in approximately 20% of patients with Diamond-Blackfan anemia (DBA), a congenital disease with a specific defect in erythropoiesis. The clinical expression of DBA is highly variable, and subclinical phenotypes may be revealed by elevated erythrocyte deaminase (eADA) activity only. In mice, complete loss of Rps19 results in early embryonic lethality whereas Rps19+/− mice are viable and without major abnormalities including the hematopoietic system. We have performed a detailed analysis of the Rps19+/− mice. We estimated the Rps19 levels in hematopoietic tissues and we analyzed erythrocyte deaminase activity and globin isoforms which are used as markers for DBA. The effect of a disrupted Rps19 allele on a different genetic background was investigated as well as the response to erythropoietin (EPO). From our results, we argue that the loss of one Rps19 allele in mice is fully compensated for at the transcriptional level with preservation of erythropoiesis.

0 Followers
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous disorder characterized by erythroid failure, congenital anomalies, and a predisposition to cancer. Faulty ribosome biogenesis is hypothesized to be the underlying defect, leading to erythroid failure due to accelerated apoptosis in affected erythroid progenitors/precursors. Since first observed in DBA, pro-apoptotic hematopoiesis has been recognized as a common mechanism for hematopoietic failure in virtually all of the inherited bone marrow failure syndromes. Inherited as an autosomal dominant trait, one of what appears to be multiple DBA genes, coding for ribosomal protein RPS19, has been cloned. The discovery of additional genes will no doubt clarify the molecular pathophysiology of this disorder. Even within families, individuals may vary dramatically as to the degree of anemia, treatment response, and the presence of congenital anomalies. The study of DBA has been facilitated by the creation of international patient registries that provide more reliable information regarding clinical presentation, genetics, and outcome, as well as descriptions of congenital malformations and cancer predisposition, than can be culled from the literature. Analysis of registry data has led to improvements in clinical care and provides patients and research specimens for clinical and laboratory investigations.
    Seminars in Hematology 08/2006; 43(3):167-77. DOI:10.1053/j.seminhematol.2006.04.002 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diamond-Blackfan anemia is a bone marrow failure syndrome associated with heterozygous mutations in the ribosomal protein S19 (RPS19) gene in a subgroup of patients. One of the interacting partners with RPS19 is the oncoprotein PIM-1 kinase. We intercrossed Rps19 ( +/- ) and Pim-1 ( -/- ) mice strains to study the effect from the disruption of both genes. The double mutant (Rps19 ( +/- ) Pim-1 ( -/- )) mice display normal growth with increased peripheral white and red blood cell counts when compared to the w.t. mice (Rps19 ( +/+ ) Pim-1 ( +/+ )). Molecular analysis of bone marrow cells in Rps19 ( +/- ) Pim-1 ( -/- ) mice revealed up-regulated levels of c-Myc and the anti-apoptotic factors Bcl(2), Bcl(XL), and Mcl-1. This is associated with a reduction of the apoptotic factors Bak and Caspase 3 as well as the cell cycle regulator p21. Our findings suggest that combined Rps19 insufficiency and Pim-1 deficiency promote murine myeloid cell growth through a deregulation of c-Myc and a simultaneous up-regulation of anti-apoptotic Bcl proteins.
    Journal of Molecular Medicine 11/2009; 88(1):39-46. DOI:10.1007/s00109-009-0558-9 · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7(Mtu) and Rps7(Zma)) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes.
    PLoS Genetics 01/2013; 9(1):e1003094. DOI:10.1371/journal.pgen.1003094 · 8.17 Impact Factor