Article

X-Rays from Superbubbles in the Large Magellanic Cloud. VI. A Sample of Thirteen Superbubbles

The Astrophysical Journal Supplement Series (Impact Factor: 16.24). 04/2001; DOI:10.1086/321794
Source: arXiv

ABSTRACT We present ROSAT observations and analysis of thirteen superbubbles in the Large Magellanic Cloud. Eleven of these observations have not been previously reported. We have studied the X-ray morphology of the superbubbles, and have extracted and analyzed their X-ray spectra. Diffuse X-ray emission is detected from each of these superbubbles, and X-ray emission is brighter than is theoretically expected for a wind-blown bubble, suggesting that the X-ray emission from the superbubbles has been enhanced by interactions between the superbubble shell and interior SNRs. We have also found significant positive correlations between the X-ray luminosity of a superbubble and its H-alpha luminosity, expansion velocity, and OB star count. Further, we have found that a large fraction of the superbubbles in the sample show evidence of ``breakout'' regions, where hot X-ray emitting gas extends beyond the H-alpha shell. Comment: 25 pages, 8 figures, to be published in Astrophysical Journal Supplement Series

0 0
 · 
0 Bookmarks
 · 
46 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We have investigated three SNRs in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing optical emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H-alpha surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.
    The Astrophysical Journal 01/2011; 725(2). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Aims: We study the diffuse X-ray emission observed in the field of view of the pulsar B 0540-69 in the Large Magellanic Cloud (LMC) by XMM-Newton. We want to understand the nature of this soft diffuse emission, which coincides with the superbubble in the HII region N 158, and improve our understanding of the evolution of superbubbles. Methods: We analyse the XMM-Newton spectra of the diffuse emission. Using the parameters obtained from the spectral fit, we perform calculations of the evolution of the superbubble. The mass loss and energy input rates are based on the initial mass function (IMF) of the observed OB association inside the superbubble. Results: The analysis of the spectra shows that the soft X-ray emission arises from hot shocked gas surrounded by a thin shell of cooler, ionised gas. We show that the stellar winds alone cannot account for the energy inside the superbubble, but the energy release of 2 - 3 supernova explosions in the past ~1 Myr provides a possible explanation. Conclusions: The combination of high sensitivity X-ray data, allowing spectral analysis, and analytical models for superbubbles bears the potential to reveal the evolutionary state of interstellar bubbles, if the stellar content is known.
    Astronomy and Astrophysics 10/2010; · 5.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The hot, X-ray-emitting gas in superbubbles imparts energy and enriched material to the interstellar medium (ISM) and generates the hot ionized medium, the ISM's high-temperature component. The evolution of superbubble energy budgets is not well understood, however, and the processes responsible for enhanced X-ray emission in superbubbles remain a matter of debate. We present Chandra ACIS-S observations of two X-ray-bright superbubbles in the Large Magellanic Cloud (LMC), DEM L50 (N186) and DEM L152 (N44), with an emphasis on disentangling the true superbubble X-ray emission from non-related diffuse emission and determining the spatial origin and spectral variation of the X-ray emission. An examination of the superbubble energy budgets shows that on the order of 50% of the X-ray emission comes from regions associated with supernova remnant (SNR) impacts. We find some evidence of mass-loading due to swept-up clouds and metallicity enrichment, but neither mechanism provides a significant contribution to the X-ray luminosities. We also find that one of the superbubbles, DEM L50, is likely not in collisional ionization equilibrium. We compare our observations to the predictions of the standard Weaver et al. model and to 1-D hydrodynamic simulations including cavity supernova impacts on the shell walls. Our observations show that mass-loading due to thermal evaporation from the shell walls and SNR impacts are the dominant source of enhanced X-ray luminosities in superbubbles. These two processes should affect most superbubbles, and their contribution to the X-ray luminosity must be considered when determining the energy available for transport to the ISM.
    The Astrophysical Journal 12/2010; · 6.73 Impact Factor

Full-text (2 Sources)

View
7 Downloads
Available from
Aug 10, 2013