Article

V-ATPase inhibitors and implication in cancer treatment

{ "0" : "Entrerríos s/n, Santiago de Compostela C.P. 15782, Spain" , "1" : "Unidad de Medicina Molecular - Fundación Pública Galega de Medicina Xenómica, Edificio de Consultas planta -2, Hospital Clinico Universitario C.P. 15706, Santiago de Compostela, Spain" , "3" : "V-ATPase inhibitors" , "4" : "Tumor metastasis" , "5" : "Tumor cell growth" , "6" : "Chemoresistance" , "7" : "V-ATPases" , "8" : "Concanamycin" , "9" : "Bafilomycin" , "10" : "Salicylihalamide" , "11" : "Archazolid" , "12" : "Indolyls"}
Cancer Treatment Reviews (Impact Factor: 6.47). 12/2009; DOI: 10.1016/j.ctrv.2009.08.003

ABSTRACT Acidity is one of the main features of the tumors. The V-ATPase is the primary responsible for the control of tumor microenvironment by proton extrusion to the extracellular medium. The acid environment favors tissue damage, activation of destructive enzymes in the extracellular matrix, the acquisition of metastatic cell phenotypes as well as increasing the destructive capacity. The application of specific inhibitors of V-ATPases, can decrease the acidity of tumor and may allow the reduction of tumor metastasis, acting on the survival of tumor cells and prevent the phenomena of chemoresistance. Among the most important inhibitors can be distinguished benzolactone enamides (salicylihalamide), lobatamide A and B, apicularen, indolyls, oximidine, macrolactone archazolid, lobatamide C, and cruentaren. The latest generation of inhibitors includes NiK12192, FR202126, and PPI SB 242784. The purpose of this paper is to describe the latest advances in the field of V-ATPase inhibitors, describe further developments related to the classic inhibitors, and discuss new potential applications of these drugs in cancer treatment.

Download full-text

Full-text

Available from: Abel García-García, Jun 22, 2015
1 Follower
 · 
275 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells show a metabolic shift that makes them overproduce protons; this has the potential to disturb the cellular acid-base homeostasis. However, these cells show cytoplasmic alkalinisation, increased acid extrusion and endosome-dependent drug resistance. Vacuolar type ATPases (V-ATPases), together with other transporters, are responsible to a great extent for these symptoms. These multi-subunit proton pumps are involved in the control of cytosolic pH and the generation of proton gradients (positive inside) across endocellular membrane systems like Golgi, endosomes or lysosomes. In addition, in tumours, they have been shown to play an important role in the acidification of the intercellular medium. This importance makes them an attractive target to control tumour cell proliferation. In the present review we present the major characteristics of this kind of proton pumps and we provide some recent insights on their in vivo regulation. Also, we review some of the consequences that V-ATPase inhibition carries for the tumour cell, such as cell cycle arrest or cell death, and provide a brief summary of the studies related to cancer made recently with commercially available inhibitors. In the light of recent knowledge on the regulation of this proton pump, some new approaches to impair V-ATPase function are also suggested.
    Current pharmaceutical design 02/2012; 18(10):1383-94. DOI:10.2174/138161212799504821 · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In cancer cells in vitro, the glycolytic pathway and the mitochondrial tricarboxylic acid (TCA) cycle are programmed to produce more precursor molecules, and relatively less ATP, than in differentiated cells. We address the questions of whether and where these changes occur in vivo in glioblastomas grown from C6 cells in rat brain. These gliomas show some spatial organization, notably in the upregulation of membrane proton transporters near the rim. We immunolabeled pairs of proteins (as well as DNA) on sections of rat brains containing gliomas, measured the profiles of fluorescence intensity on strips 200 µm wide and at least 3 mm long running perpendicular to the tumor rim, and expressed the intensity in the glioma relative to that outside. On averaged profiles, labeling of a marker of the glycolytic pathway, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was, as expected, greater in the glioma. Over distances up to 2.5 mm into the glioma, expression of a marker of the TCA cycle, Tom20, a pre-protein receptor on the translocation complex of the mitochondrial outer membrane, was also upregulated. The ratio of upregulation of Tom20 to upregulation of GAPDH was, on average, slightly greater than one. Near the rim (0.4-0.8 mm), GAPDH was expressed less and there was a peak in the mean ratio of 1.16, SEM = 0.001, N = 16 pairs of profiles. An antibody to V-ATPase, which, by pumping protons into vacuoles contributes to cell growth, also indicated upregulation by about 40%. When compared directly with GAPDH, upregulation of V-ATPase was only 0.764, SD = 0.016 of GAPDH upregulation. Although there was considerable variation between individual measured profiles, on average, markers of the glycolytic pathway, of mitochondria, and of cell proliferation showed coherent upregulation in C6 gliomas. There is a zone, close to the rim, where mitochondrial presence is upregulated more than the glycolytic pathway, in agreement with earlier suggestions that lactate is taken up by cells near the rim.
    BMC Research Notes 12/2015; 8(1):207. DOI:10.1186/s13104-015-1191-z
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor associated vacuolar H+-ATPases (V-ATPases) are multi-subunit proton pumps that acidify tumor microenvironment, thereby promoting tumor invasion. Subunit 'a' of its V0 domain is the major pH sensing unit that additionally controls sub-cellular targeting of V-ATPase and exists in four different isoforms. Our study reports an elevated expression of the V-ATPase-V0a2 isoform in ovarian cancer(OVCA) tissues and cell lines(A2780, SKOV-3 and TOV-112D). Among all V0'a' isoforms, V0a2 exhibited abundant expression on OVCA cell surface while normal ovarian epithelia did not. Sub-cellular distribution of V-ATPase-V0a2 confirmed its localization on plasma-membrane, where it was also co-associated with cortactin, an F-actin stabilizing protein at leading edges of cancer cells. Additionally, V0a2 was also localized in early and late endosomal compartments that are sites for modulations of several signaling pathways in cancer. Targeted inhibition of V-ATPase-V0a2 suppressed matrix metalloproteinase activity(MMP-9 & MMP-2) in OVCA cells. In conclusion, V-ATPase-V0a2 isoform is abundantly expressed on ovarian tumor cell surface in association with invasion assembly related proteins and plays critical role in tumor invasion by modulating the activity of matrix-degrading proteases. This study highlights for the first time, the importance of V-ATPase-V0a2 isoform as a distinct biomarker and possible therapeutic target for treatment of ovarian carcinoma.
    Oncotarget 01/2015; · 6.63 Impact Factor