Shear fracture (Mode II) of brittle rock

Luleå University of Technology, Luleå, Norrbotten, Sweden
International Journal of Rock Mechanics and Mining Sciences (Impact Factor: 1.42). 04/2003; 40(3):355-375. DOI: 10.1016/S1365-1609(03)00003-0

ABSTRACT Mode II fracture initiation and propagation plays an important role under certain loading conditions in rock fracture mechanics. Under pure tensile, pure shear, tension- and compression-shear loading, the maximum Mode I stress intensity factor, , is always larger than the maximum Mode II stress intensity factor, . For brittle materials, Mode I fracture toughness, KIC, is usually smaller than Mode II fracture toughness, KIIC. Therefore, reaches KIC before reaches KIIC, which inevitably leads to Mode I fracture. Due to inexistence of Mode II fracture under pure shear, tension- and compression-shear loading, classical mixed mode fracture criteria can only predict Mode I fracture but not Mode II fracture. A new mixed mode fracture criterion has been established for predicting Mode I or Mode II fracture of brittle materials. It is based on the examination of Mode I and Mode II stress intensity factors on the arbitrary plane θ,KI(θ) and KII(θ), varying with θ(−180°⩽θ⩽+180°), no matter what kind of loading condition is applied. Mode I fracture occurs when or and at θIC. Mode II fracture occurs when and at θIIC. The validity of the new criterion is demonstrated by experimental results of shear-box testing.Shear-box test of cubic specimen is a potential method for determining Mode II fracture toughness KIIC of rock since it can create a favorable condition for Mode II fracture, i.e. is always 2–3 times larger than and reaches KIIC before reaches KIC. The size effect on KIIC for single- and double-notched specimens has been studied for different specimen thickness B, dimensionless notch length a/W (or 2a/W) and notch inclination angle α. The test results show that KIIC decreases as B increases and becomes a constant when B is equal to or larger than W for both the single- and double-notched specimens. When a/W (or 2a/W) increases, KIIC decreases and approaches a limit. The α has a minor effect on KIIC when α is within 65–75°. Specimen dimensions for obtaining a reliable and reproducible value of KIIC under shear-box testing are presented. Numerical results demonstrate that under the shear-box loading condition, tensile stress around the notch tip can be effectively restrained by the compressive loading. At peak load, the maximum normal stress is smaller than the tensile strength of rock, while the maximum shear stress is larger than the shear strength in the presence of compressive stress, which results in shear failure.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mode II fracture toughness and strength due to shear stress are important parameters in the stability of caprock and injection zone with application to geological sequestration of carbon dioxide. In this research, a short beam compression test has been used to determine the shear strength and the mode II fracture toughness for Coconino sandstone. The average value of the shear strength and mode II fracture toughness are estimated to be 23.53 MPa and 1.58 MPam respectively. The stress intensity factor is suggested by finite element analysis using the displacement extrapolation method. The effect of biaxial stress and water saturation on the fracture toughness has also been investigated. The fracture toughness increases with confining stresses, but decreases by 11.4% in fully saturated condition.
    11/2013; 15(6). DOI:10.9711/KTAJ.2013.15.6.547
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Static diametrical compression tests conducted on inclined cracked chevron notched Brazilian disc (CCNBD) Brisbane tuff specimens showed that the notched cracks at the centre of the specimens opened (Mode I) up to 30° crack inclination angle (β), whereas crack closure (Mode II) started for β > 33°, and closure became more pronounced at even higher β of 45° and 70°. Both the experimental and numerical results showed that the crack initiation angle (θ) was a function of the β. Scanning electron microscope (SEM) images showed that fatigue damage on cyclic loading of Brisbane tuff is strongly influenced by the failure of the matrix due to both intergranular and transgranular fracturing.
    Rock Mechanics and Rock Engineering 09/2013; 46(5). DOI:10.1007/s00603-012-0303-5 · 1.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The semi-circular bend specimen subjected to three-point bending has received much attention in recent years for measuring the mixed mode I/II fracture resistance of rocks. In this paper, the experimental results reported in literature and obtained from fracture tests using the semi-circular bend specimen are revisited for several different rocks including marble, sandstone, limestone, and mudstone. It is shown that a two-term expression for the near-crack-tip stresses together with a criterion based on a fixed critical tangential stress under mixed mode loading provide very good estimates for the experimental results reported for mixed mode I/II fracture in the investigated rocks.
    Engineering Fracture Mechanics 05/2013; 103:115–123. DOI:10.1016/j.engfracmech.2012.09.021 · 1.66 Impact Factor