• Source
    Revista da Associação Médica Brasileira 04/2012; 58(2):138-40. · 0.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate an unusual case of immature ovarian teratoma with onset of mature glial cells implanted on the contralateral ovary, a challenge in the diagnosis of the second ovarian tumor. We report the case of a 31- yr-old woman, who developed at the age of 16 an immature teratoma in the right ovary that was surgically removed. Six years later mature glial implants were present on the left ovary and six months later at the level of peritoneum that relapsed after other six months. The patient suffered three surgical resections after the initial one. Paraffin sections and immunohistochemical examinations using antibodies against glial and neuronal antigens were performed. In the teratoma, the neuroectodermal tissue expressed Glial fibrillary acidic protein (GFAP), S100 protein, Epithelial membrane antigen (EMA) and Cytokeratin 34 beta E12 (Ck34beta E12), wheares the implants expressed only GFAP and S100 protein. The immature teratoma is the rarest type of ovarian teratomas. Gliomatosis peritonei is an exceptional finding, expecially with onset on the contralaterally ovary. The implant of the mature glial cells has a high risk of relapse, as seen in our case, thus close follow-up of the patient is necessary.
    Journal of Ovarian Research 04/2013; 6(1):28. · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial ovarian cancer (EOC) remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed 'cancer initiating cells' or 'cancer stem cells (CSCs)' have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.
    Journal of Ovarian Research 11/2012; 5(1):37. · 2.43 Impact Factor