Article

First terrestrial soft X-ray auroral observation by the Chandra X-ray Observatory

Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022, India.; Department of Space Science, Southwest Research Institute, San Antonio, TX 78228, USA; Department of Physics and Technology, University of Bergen, Bergen N-5007, Norway; Department of Atmospheric, Oceanic, & Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA; University of Alabama in Huntsville, NSSTC, XD12, Huntsville, AL 35805, USA; Jet Propulsion Laboratory, Pasadena, CA 91109, USA
Journal of Atmospheric and Solar-Terrestrial Physics (Impact Factor: 1.42). 01/2007; DOI: 10.1016/j.jastp.2006.07.011
Source: arXiv

ABSTRACT Northern auroral regions of Earth were imaged with energetic photons in the 0.1–10 keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each duration) between mid-December 2003 and mid-April 2004. These observations aimed at searching for Earth's soft () X-ray aurora in a comparative study with Jupiter's X-ray aurora, where a pulsating X-ray “hot-spot” has been previously observed by Chandra. The first Chandra soft X-ray observations of Earth's aurora show that it is highly variable (intense arcs, multiple arcs, diffuse patches, at times absent). In at least one of the observations an isolated blob of emission is observed near the expected cusp location. A fortuitous overflight of DMSP satellite F13 provided SSJ/4 energetic particle measurements above a bright arc seen by Chandra on 24 January 2004, 20:01–20:22 UT. A model of the emissions expected strongly suggests that the observed soft X-ray signal is bremsstrahlung and characteristic K-shell line emissions of nitrogen and oxygen in the atmosphere produced by electrons.

0 Bookmarks
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Absolute K-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Because of the difficulty of creating a target of neutral atomic nitrogen, no high-resolution K-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s → np resonance features throughout the threshold region. An experimental value of 409.64±0.02  eV was determined for the K-shell binding energy.
    Physical Review Letters 07/2011; 107(3):033001. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturn's disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1- 2 keV) X-ray observation of Earth's aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles. This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun.
    Planetary and Space Science 12/2010; · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While X-ray astronomy began in 1962 and has made fast progress since then in expanding our knowledge about where in the Universe X-rays are generated by which processes, it took one generation before the importance of a fundamentally different process was recognized. This happened in our immediate neighborhood, when in 1996 comets were discovered as a new class of X-ray sources, directing our attention to charge exchange reactions. Charge exchange is fundamentally different from other processes which lead to the generation of X-rays, because the X-rays are not produced by hot electrons, but by ions picking up electrons from cold gas. Thus it opens up a new window, making it possible to detect cool gas in X-rays (like in comets), while all the other processes require extremely high temperatures or otherwise extreme conditions. After having been overlooked for a long time, the astrophysical importance of charge exchange for the generation of X-rays is now receiving increased general attention. In our solar system, charge exchange induced X-rays have now been established to originate in comets, in all the planets from Venus to Jupiter, and even in the heliosphere itself. In addition to that, evidence for this X-ray emission mechanism has been found at various locations across the Universe. Here we summarize the current knowledge about solar system X-rays resulting from charge exchange processes.
    Astronomische Nachrichten 04/2012; · 1.40 Impact Factor

Full-text (4 Sources)

View
47 Downloads
Available from
Jun 5, 2014