Modeling high-energy cosmic ray induced terrestrial muon flux: A lookup table

Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Dr. # 1082, Lawrence, KS 66045, United States
Radiation Physics and Chemistry (Impact Factor: 1.19). 11/2010; 80(6):701-703. DOI: 10.1016/j.radphyschem.2011.02.020
Source: arXiv

ABSTRACT On geological timescales, the Earth is likely to be exposed to an increased flux of high-energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma-ray bursts or by galactic shocks. Typical cosmic ray energies may be much higher than the flux which normally dominates. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the radiation dose. Muons contribute 85% to the radiation dose from cosmic rays. This enhanced dose could be potentially harmful to the biosphere. This mechanism has been discussed extensively in literature but has never been quantified. Here, we have developed a lookup table that can be used to quantify this effect by modeling terrestrial muon flux from any arbitrary cosmic ray spectra with 10 GeV to 1 PeV primaries. This will enable us to compute the radiation dose on terrestrial planetary surfaces from a number of astrophysical sources.

  • Source
    • "The table was generated with 1.9 x 10 6 primaries. The muon flux generated from the lookup table data is in excellent agreement with the Hebbeker and Timmermans [2002] polynomial fit which itself is derived from a compilation of muon data from a number of experiments [Atri and Melott 2011]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A ~ 62 My periodicity in fossil biodiversity has been observed in independent studies of paleontology databases over ~0.5Gy. The period and phase of this biodiversity cycle coincides with the oscillation of our solar system normal to the galactic disk with an amplitude ~70 parsecs and a period ~64 My. Our Galaxy is falling toward the Virgo cluster, forming a galactic shock at the north end of our galaxy due to this motion, capable of accelerating particles and exposing our galaxy's northern side to a higher flux of cosmic rays. These high-energy particles strike the Earth's atmosphere initiating extensive air showers, ionizing the atmosphere by producing charged secondary particles. Secondary particles such as muons produced as a result of nuclear interactions are able to reach the ground and enhance the biological radiation dose. Using a Monte Carlo simulation package CORSIKA, we compute the biological dose resulting from enhanced muon exposure from cosmic rays and discuss their implications for terrestrial biodiversity variations.
    Geophysical Research Letters 08/2011; 38(19). DOI:10.1029/2011GL049027 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate evolutionary dynamics related to periodicity fossil biodiversity. Coherent periodic fluctuation in origination/extinction of marine genera that survive <45 million years is the source of an observed ~62 million year periodicity analyzed in Paper I. We also show that the evolutionary dynamics of "long-lived" genera (those that survive >45 million years) do not participate in the periodic fluctuation in diversity and differ from those of "short-lived" genera. The difference between the evolutionary dynamics of these 2 genera classes indicates that the periodic pattern is not an artifact of variation in quality of the geologic record. The interplay of these two previously undifferentiated systems, together with the secular increase in abundance of "long-lived" genera, is probably the source of heretofore unexplained differences in evolutionary dynamics between the Paleozoic and post-Paleozoic as reported by others. Testing for cycles similar to the 62 Myr cycle in fossil biodiversity superimposed on the long-term trends of the Phanerozoic as described in Paper I, we find a significant (but weaker) signal in sedimentary rock packages, particularly carbonates, which suggests a connection. The presence of a periodic pattern in evolutionary dynamics of the vulnerable "short-lived" component of marine fauna demonstrates that a long-term periodic fluctuation in environmental conditions capable of affecting evolution in the marine realm characterizes our planet. Coincidence in timing is more consistent with a common cause than sampling bias. A previously identified set of mass extinctions preferentially occur during the declining phase of the 62 Myr periodicity, supporting the idea that the periodicity relates to variation in biotically important stresses. Further work should focus on finding links to physical phenomena that might reveal the causal system or systems.
    Paleobiology 11/2010; 37(3). DOI:10.1666/09055.1 · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note for the first time that so-called "short-hard" gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Given their precursors, short bursts may come with little or no warning.
    Astrobiology 05/2011; 11(4):343-61. DOI:10.1089/ast.2010.0603 · 2.51 Impact Factor
Show more


Available from