A CFD based combustion model of an entrained flow biomass gasifier

Department of Chemical Engineering, University of Sydney, Sydney, NSW 2006, Australia; Biomass Energy Services and Technology Pty. Ltd., 1 Davids Close, Somersby, NSW 2250, Australia
Applied Mathematical Modelling (Impact Factor: 2.16). 01/2000; DOI: 10.1016/S0307-904X(99)00025-6

ABSTRACT This paper contains the description of a detailed Computational Fluid Dynamics (CFD) model developed to simulate the flow and reaction in an entrained flow biomass gasifier. The model is based on the CFX package and represents a powerful tool which can be used in gasifier design and analysis. Biomass particulate is modelled via a Lagrangian approach as it enters the gasifier, releases its volatiles and finally undergoes gasification. Transport equations are solved for the concentration of CH4, H2, CO, CO2, H2O and O2 and heterogeneous reactions between fixed carbon and O2, CO2 and H2O are modelled. The model provides detailed information on the gas composition and temperature at the outlet and allows different operating scenarios to be examined in an efficient manner.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.
    International Journal of Energy and Environment (IJEE). 06/2013; 4(4):581-614.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–e turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance.
    Energy Conversion and Management 06/2014; 86:670-682. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper discusses the design and development of moderate and intense low oxygen dilution (MILD) combustion burners, including details of the computational fluid dynamics process, step-by-step from designing the model until post-processing. A 40 mm diameter bluff-body burner was used as the flame stabilizer. The fuel nozzle was placed in the center with a diameter of 1mm and an annular air nozzle with an opening size of 1,570 mm2, and four EGR pipes were used. Non-premixed combustion with a turbulent realizable k-epsilon was used in the simulation. The fuel used is low calorific value gas (biogas). The synthetic biogas was a mixture of 60% methane and 40% carbon dioxide. The simulation was successfully achieved during the MILD regime where the ratio of maximum-to-average temperature was less than the required 23%.
    JMES. 06/2014; 6:995-1013.

Full-text (2 Sources)

Available from
Jul 4, 2014