Joint resummation for slepton pair production at hadron colliders

Institut für Theoretische Physik, Universität Karlsruhe, Postfach 6980, D-76128 Karlsruhe, Germany; Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble, France
Nuclear Physics B (Impact Factor: 4.33). 01/2008; DOI:10.1016/j.nuclphysb.2007.10.021

ABSTRACT We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell–Yan like slepton pair and slepton–sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(αs). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present a first precision analysis of the transverse-momentum spectrum of gaugino pairs produced at the Tevatron and the LHC with center-of-mass energies of 1.96 and 10 or 14 TeV, respectively. Our calculation is based on a universal resummation formalism at next-to-leading logarithmic accuracy, which is consistently matched to the perturbative prediction at O(αs). Numerical results are given for the “gold-plated” associated production of neutralinos and charginos decaying into three charged leptons with missing transverse energy as well as for the pair production of neutralinos and charginos at two typical benchmark points in the constrained MSSM. We show that the matched resummation results differ considerably from the Monte Carlo predictions employed traditionally in experimental analyses and discuss the impact on the determination of SUSY mass parameters from derived transverse-mass spectra. We also investigate in detail the theoretical uncertainties coming from scale and parton-density function variations and non-perturbative effects.
    Physics Letters B 07/2013; · 4.57 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Motivated by hints for a light Standard Model-like Higgs boson and a shift in experimental attention towards electroweak supersymmetry particle production at the CERN LHC, we update in this paper our precision predictions at next-to-leading order of perturbative QCD matched to resummation at the next-to-leading logarithmic accuracy for direct gaugino pair production in proton-proton collisions with a center-of-mass energy of 8 TeV. Tables of total cross sections are presented together with the corresponding scale and parton density uncertainties for benchmark points adopted recently by the experimental collaborations, and figures are presented for up-to-date model lines attached to them. Since the experimental analyses are currently obtained with parton showers matched to multi-parton matrix elements, we also analyze the precision of this procedure by comparing invariant-mass and transverse-momentum distributions obtained in this way to those obtained with threshold and transverse-momentum resummation.
    Journal of High Energy Physics 07/2012; 2012(10). · 5.62 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present an implementation for slepton pair production at hadron colliders in the POWHEG BOX, a framework for combining next-to-leading order QCD calculations with parton-shower Monte-Carlo programs. Our code provides a SUSY Les Houches Accord interface for setting the supersymmetric input parameters. Decays of the sleptons and parton-shower effects are simulated with PYTHIA. Focussing on a representative point in the supersymmetric parameter space we show results for kinematic distributions that can be observed experimentally. While next-to-leading order QCD corrections are sizable for all distributions, the parton shower affects the color-neutral particles only marginally. Pronounced parton-shower effects are found for jet distributions.
    Journal of High Energy Physics 08/2012; 2012(10). · 5.62 Impact Factor

Full-text (2 Sources)

Available from
Jul 24, 2013