Direct synthesis of carbon nanotubes decorated with size-controllable Fe nanoparticles encapsulated by graphitic layers

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China
Carbon (Impact Factor: 6.16). 09/2008; DOI: 10.1016/j.carbon.2008.06.021
Source: OAI

ABSTRACT A simple method has been developed for direct synthesis of magnetic multi-walled carbon nanotubes (MWCNTs) homogeneously decorated with size-controllable Fe nanoparticles (Fe-NPs) encapsulated by graphitic layers on the MWCNT surface by pyrolysis of ferrocene. These composites have similar C/Fe atomic ratio of ∼10 and exhibit sufficiently high saturation magnetization for magnetic separation in a liquid phase. Moreover, with 0, ∼1, ∼2 wt% sulfur as growth promoter, the size of Fe-NPs can be controlled with an average diameter of ∼5, ∼22 and ∼42 nm, respectively. When compared to time-consuming wet-chemical methods, the simplicity of this method should allow easy large-scale production of these magnetically functionalized MWCNTs, which can be used as catalyst supports with high stability for effective magnetic separation in liquid-phase reactions, especially under acid/basic conditions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports a significant enhancement in the thermal conductivity of silver-nanoparticle-based aqueous nanofluids with the addition of negligible amounts of multi-walled carbon nanotubes (MWCNTs). The present work was conducted using purified MWCNTs/water nanofluids prepared by a wet grinding method. Silver nanoparticles were dispersed into the MWCNT/water nanofluids via a one-step method using pulse power evaporation, which was observed to improve the dispersibility and thermal conductivity of the nanofluids. A particle sizing system (PSS) and transmission electron microscopy (TEM) were used to confirm the size of silver nanoparticles in base fluids. The PSS measurement results reveal that the size of the silver nanoparticles was approximately 100 nm, which is in good agreement with the results obtained from TEM and SEM. The maximum absorbance (2.506 abs at a wavelength of 264 nm) and highest thermal conductivity enhancement (14.5% at 40 °C) were achieved by a fluid containing ‘0.05 wt% MWCNTs–3 wt% Ag’ composite.
    Ceramics International 08/2013; 39(6):6415–6425. DOI:10.1016/j.ceramint.2013.01.069 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiwall carbon nanotubes (MWNTs) decorated with CoO nanocrystals were synthesized by in-situ thermal decomposition of Co(acac) 2 in oleyl amine under reflux conditions open in the air. The CoO/MWNTs composite material can be easily converted to metallic Co/MWNTs through annealing under reducing atmosphere (4% H 2) at 500 • C without any significant sintering effect. The composite materials characterized by X-ray diffraction, transmission electron microscopy, and Nuclear Magnetic Resonance (NMR) spectroscopy. The structural and morphological characterization shows that the CoO has cubic face (fcc) and the particles deposited uniformly on the external surface of the carbon nanotubes. In the annealed materials, the NMR shows that the fcc and hcp metallic Co phases coexist with a significant percentage of stacking faults. The magnetic measurements indicated that the CoO/MWNTs composite is largely composed of CoO nanoparticles with uncompensated surface spins. The fluctuations of spins persist in partially reduced CoO grains as shown by nuclear spin-lattice relaxation measurements.
    Journal of Nanomaterials 01/2011; 9. DOI:10.1155/2011/320516 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The current–voltage characteristics of individual cup-stacked carbon nanotubes (CSCNTs) were investigated in situ inside the transmission electron microscope. Different from other quasi-1D carbon structures such as multi-walled carbon nanotubes, carbon nanofibers or graphitic fibers that normally behave as a metallic conductor of electrons, individual CSCNTs were found to exhibit unexpectedly semiconducting behaviors due to the special stacking microstructure of graphene layers. The band gap of the CSCNTs was obtained with the value of about 0.44 eV, in contrast to the zero-gap semiconducting quasi-2D graphene. These findings provide new information about the effect of the stacking graphene layers on their electronic properties, and will widen the usefulness of such stacking structure for the application in nanoelectronics.
    Carbon 03/2009; 47(3-47):731-736. DOI:10.1016/j.carbon.2008.11.005 · 6.16 Impact Factor