Mapping Motor Inhibition: Conjunctive Brain Activations across Different Versions of Go/No-Go and Stop Tasks

Institute of Psychiatry, King's College, London
NeuroImage (Impact Factor: 6.13). 03/2001; 13(2):250-261. DOI: 10.1006/nimg.2000.0685
Source: PubMed

ABSTRACT Conjunctionanalysis methods were used in functional magnetic resonance imaging to investigate brain regions commonly activated in subjects performing different versions of go/no-go and stop tasks, differing in probability of inhibitory signals and/or contrast conditions. Generic brain activation maps highlighted brain regions commonly activated in (a) two different go/no-go task versions, (b) three different stop task versions, and (c) all 5 inhibition task versions. Comparison between the generic activation maps of stop and go/no-go task versions revealed inhibitory mechanisms specific to go/no-go or stop task performance in 15 healthy, right-handed, male adults. In the go/no-go task a motor response had to be selectively executed or inhibited in either 50% or 30% of trials. In the stop task, the motor response to a go-stimulus had to be retracted on either 50 or 30% of trials, indicated by a stop signal, shortly (250 ms) following the go-stimulus. The shared “inhibitory” neurocognitive network by all inhibition tasks comprised mesial, medial, and inferior frontal and parietal cortices. Generic activation of the go/no-go task versions identified bilateral, but more predominantly left hemispheric mesial, medial, and inferior frontal and parietal cortices. Common activation to all stop task versions was in predominantly right hemispheric anterior cingulate, supplementary motor area, inferior prefrontal, and parietal cortices. On direct comparison between generic stop and go/no-go activation maps increased BOLD signal was observed in left hemispheric dorsolateral prefrontal, medial, and parietal cortices during the go/no-go task, presumably reflectinga left frontoparietal specialization for response selection.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies suggest that the response inhibition ability of children can be modified through training. Based on the notion of embodied cognition, we investigated transfer effects of a 7-day training program using a game named "Wesley says" in 8- to 12-year-old children (n = 15). The game consists of providing commands for performing simple body actions, the actual execution of which is conditional upon the preceding verbal expression "Wesley says." Training effects were assessed with a computer-based visual go/no-go task and the Stroop color-word interference task. Relative to a control group playing other games mainly involving physical exercise (n = 15), the trained group showed a performance improvement on the go/no-go task, but not on the Stroop task. These results suggest the potential of an easy-to-use and ecologically valid training game to improve the inhibition capacity of children on related response inhibition tasks but not on tasks measuring other aspects of inhibition, such as interference control.
    Frontiers in Psychology 01/2015; 6:207. DOI:10.3389/fpsyg.2015.00207 · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2015; 35(15):5990-7. DOI:10.1523/JNEUROSCI.4850-14.2015 · 6.75 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014