Article

Sprite observations from the space shuttle during the Mediterranean Israeli dust experiment (MEIDEX)

Department of Geophysics and Planetary Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
Journal of Atmospheric and Solar-Terrestrial Physics (Impact Factor: 1.42). 01/2003; DOI: 10.1016/S1364-6826(02)00332-2

ABSTRACT The Mediterranean Israeli dust experiment (MEIDEX) flew on-board the space shuttle in winter 2003, in a 39°-inclination orbit for 16 days, passing over the major thunderstorm regions on Earth. The primary science instrument of the MEIDEX payload is a Xybion IMC-201 image-intensified radiometric camera with six narrow band filters, boresighted with a wide-FOV color video camera. During the nightside of the orbit there will be dedicated observations toward the Earth's limb above areas of active thunderstorms, in an effort to image transient luminous events (TLEs) from space. Optical observations from space will be conducted with the filter that matches the observed wide peak centered at that typifies red sprites, and also with the 380 and filters for recording blue jets. Observations will consist of a continuous recording of the Earth's limb, from the direction of the dusk terminator towards the nightside. Areas of high convective activity will be forecasted and uplinked to the crew before the observation. The astronaut will direct the camera toward areas with lightning activity, observed visually through the windows and on monitors in the crew cabin. Simultaneously with the optical observations from space, dedicated ground measurements will be conducted on a global scale. Two field sites in the Negev Desert in Israel will be used to collect electromagnetic data in the ELF and VLF frequency range. Additional ground stations in Germany, Hungary, USA, Antarctica, Chile, South Africa, Australia, Taiwan and Japan will also record Schumann resonance and VLF signals. The coordinated measurements from various locations on Earth and from space will enable us to triangulate the location and determine the polarity and charge moment of the parent lightning of the optically observed TLEs. The success of the campaign will further clarify the geographical distribution of Sprites, Elves and Jets.

0 Bookmarks
 · 
700 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sprites are a very fascinating member of the huge and varied family of Transient Luminous Events (TLEs), sometimes called also "high-altitude lightning". Topic of extensive scientific research in the past decade, they are thought to be an interesting addition to the tropospheric lightning activity and an important participant in affecting the global atmospheric electric circuit and atmospheric circulation. Several theories have tried to explain the strange nature of sprites though there are still many unanswered question waiting to be uncovered. The present paper summarizes the known facts related to sprites according to the existing literature in the field of sprite research. The physical and optical properties of sprites are revealed as well as the physical mechanisms for their generation. The methods of detection are briefly introduced and some concepts of the numerical modeling of sprites are given. An attention is paid also to the characteristics of sprite-parent lightning and thunderstorms.
    Bulgarian Geophysical Journal Geophysical Institute Bulgarian Academy of Sciences. 01/2006; 32(80).
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a literature survey on the recent developments related to experimental and modeling studies of transient luminous events (TLEs) in the middle atmosphere termed elves, sprites and jets that are produced in association with thunderstorm activity at tropospheric altitudes. The primary emphasis is placed on publications that appeared in refereed literature starting from year 2008 and up to the present date. The survey covers general phenomenology of TLEs and their relationships to characteristics of individual thunderstorms and lightning, physical mechanisms and modeling of TLEs, past, present and future orbital observations of TLEs, and their chemical, energetic and electric effects on local and global scales. KeywordsAtmospheric electricity–Lightning–Sprites–Sprite halos–Elves–Blue jets–Gigantic jets
    Space Science Reviews 01/2012; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper examines the precision of location and top height of mesoscale convective systems, as forecast by the Aviation Weather Center (AWC). The examination was motivated by the Mediterranean Israeli Dust Experiment (MEIDEX) on the space shuttle Columbia, aimed to image transient luminous events (TLEs), such as sprites, jets, and elves, from orbit. Mesoscale convective systems offer a high probability for the occurrence of TLEs above active thunderstorms. Because the operational methodology was planned around a 24-h cycle, there was a need for a global forecast of areas with a high probability of massive thunderstorms that are prone to exhibit TLE activity. The forecast was based on the high-level significant weather (SIGWX) maps, commonly used for civil aviation, provided by the AWC on the Internet. To estimate the operational skill of this forecast for successfully detecting clouds with a high probability for producing TLEs, predictions for selected dates were compared with satellite observations. The locations of 66 mesoscale cloud systems on Significant Weather Maps, produced for eight different dates in August 2001, were compared with satellite global IR images for these dates. Operational skill was determined as the percentage of observed cloud systems found within a 5° range in the regions that appeared on the forecast maps as having the potential to contain thunderclouds and was found to be 92%. No consistent error was found in location. The predicted size of the convective system was typically larger than the observed size. Cloud-top heights of 53 systems were examined on four dates in October November 2001, using IR radiances converted to brightness temperatures. For each convective system, the coldest cloud-top temperature was converted to height, using the NCEP NCAR reanalysis data for the respective location and time. The standard error in the forecast heights was 2516 m. Because the purpose was to get true alerts of potential TLE occurrences, operational forecast skill was defined as the percentage of forecasts that were accurate within 1000 m or higher than observed. The 1000-m tolerance was allowed because of inevitable uncertainties underlying this method of analysis. Operational skill was found to be only 43%. During the ``STS-107'' mission flown in January 2003, the forecasted areas of main convective centers were transmitted daily to the crew and helped them in pointing the cameras and targeting thunderstorms. This ensured the success of the MEIDEX sprite observations that recorded numerous events in many different geographical locations.
    Journal of Applied Meteorology 01/2004; 43(5):720-726.

Full-text (2 Sources)

View
61 Downloads
Available from
Jun 3, 2014