Article

Processing analysis of the ternary LiNH2–MgH2–LiBH4 system for hydrogen storage

Department of Physics, College of Engineering, Architecture and Physical Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA
International Journal of Hydrogen Energy (Impact Factor: 2.93). 10/2009; 34(19):8086-8093. DOI: 10.1016/j.ijhydene.2009.07.065

ABSTRACT In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials.

Download full-text

Full-text

Available from: Sesha Srinivasan, Aug 03, 2015
1 Follower
 · 
255 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we have investigated the effect of vanadium and its compounds (V, V2O5 and VCl3) on desorption characteristics of 1:2 magnesium amide (Mg(NH2)2) and lithium hydride (LiH) mixture. The hydrogen storage characteristics of 1:2 Mg(NH2)2/LiH mixture gets enhanced with admixing of V, V2O5 and VCl3 separately. The VCl3 has been found to be the most effective followed by V and V2O5. The activation energy for dehydrogenation process of 1:2 Mg(NH2)2/LiH mixture with and without catalyst has been evaluated using a method suggested by Ozawa et al. [25]. Based on the experimental results, schematic reaction scheme for decomposition of Mg(NH2)2 in the presence of VCl3 has also been proposed.
    International Journal of Hydrogen Energy 01/2010; 35(1):238–246. DOI:10.1016/j.ijhydene.2009.10.029 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In situ Raman spectroscopy was used to monitor the dehydrogenation of ball-milled mixtures of LiNH2–LiBH4–MgH2 nanoparticles. The as-milled powders were found to contain a mixture of Li4BN3H10 and Mg(NH2)2, with no evidence of residual LiNH2 or LiBH4. It was observed that the dehydrogenation of both of Li4BN3H10 and Mg(NH2)2 begins at 353 K. The Mg(NH2)2 was completely consumed by 415 K, while Li4BN3H10 persisted and continued to release hydrogen up to 453 K. At higher temperatures Li4BN3H10 melts and reacts with MgH2 to form Li2Mg(NH)2 and hydrogen gas. Cycling studies of the ball-milled mixture at 423 K and 8 MPa (80 bar) found that during rehydrogenation of Li4BN3H10 Raman spectral modes reappear, indicating partial reversal of the Li4BN3H10 to Li2Mg(NH)2 transformation.
    International Journal of Hydrogen Energy 06/2010; 35(12):6323-6331. DOI:10.1016/j.ijhydene.2010.02.101 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the critical steps in the formation of Ca(BH4)2 starting from CaH2−MgB2 thin films. As a first step, thin films of CaH2 are successfully deposited by reactive sputtering using a mixture of Ar/H2 as sputter plasma. The films are analyzed by transmission electron microscopy (TEM) and by optical spectrophotometry. The calculated dielectric functions for CaH2, Ca, and Ca(OH)2 are used to reproduce the optical measurements and to check the quality of the films. The calculation of the dielectric functions of the hydrides is performed by first solving the quasi-particle equation in the GW0 approximation to the Hedin equations and by second solving the equation of motion for an electron hole pair, the Bethe Salpeter equation. In this way, the exciton effects are also included in the dielectric function. The same procedure is used on NaH films to show the validity of the method. The experimental optical gaps obtained for the two hydrides (5.8 ± 0.1 eV for NaH and 5.2 ± 0.1 eV for CaH2) fit considerably well with the theoretical calculations. MgB2 films have been deposited at room temperature by sputtering using a MgB2 target. X-ray photoelectron spectroscopy (XPS) shows that boron is bound to the MgB2 phase while there is a small amount of free magnesium in excess which can be partly oxidized. Co-sputtered and multilayered CaH2−MgB2 thin films are investigated using high-pressure differential scanning calorimetry (HP-DSC). Both starting configurations show an exothermic reaction around 628 K during hydrogenation at 100 and 140 bar H2, which is consistent with the formation of Ca(BH4)2, with a more complete reaction in the co-sputtered case. However, the nanocrystalline/amorphous nature of the product does not allow further structural characterization. Despite optimal atomic mixing provided by the thin film approach, the reaction still occurs at high temperature and pressure confirming the preeminence of nucleation over diffusion processes for the formation of calcium borohydride in this complex reactive synthesis.
    The Journal of Physical Chemistry C 07/2010; 114(32):13895. DOI:10.1021/jp101704m · 4.84 Impact Factor
Show more