Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea

Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Remote Sensing of Environment 01/2002; DOI: 10.1016/S0034-4257(01)00334-0

ABSTRACT The northern Arabian Sea is a semienclosed sea with high primary productivity and a complicated flow pattern consisting of several eddies. This paper reports on phytoplankton blooms, which were associated with a cold eddy in the northern Arabian Sea during November 1996, inferred from Ocean Color and Temperature Scanner (OCTS) and Sea-view Wide Field-of-view Sensor (SeaWiFS)-derived chlorophyll a (Chl-a hereafter), AVHRR sea surface temperature (SST), and other available oceanography data. The blooms emerged at 100 km from both coasts in the Gulf of Oman (60.5°E, 24.5°N) where the depth is about 3000 m. The Chl-a concentrations patch first appeared on November 2 and decayed after about 4 weeks (December 3, 1996). The high Chl-a concentrations patch was about 100 km in diameter and it was located at 60.3–61.3°E, 23.5–24.5°N. The bloom, having a mean Chl-a concentration of 6.8 mg m−3 on November 6, was located in a cold SST eddy, which was accompanied by another feature, an anticyclone eddy (of 100 km in diameter) with high SST and low Chl-a concentrations to the southwest (61.5°E, 22.5°N). An SST drop occurred around November 14, which coincides with a peak of the vertical pumping velocity derived from NSCAT-derived wind stress. Two SeaWiFS-derived Chl-a images obtained in November 1998 and 1999 show good agreement in terms of the locations and features with those described above through the OCTS observations. The possible mechanism for this newly identified Chl-a patch is discussed.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25–26 °C. The bloom with a high Chl-a concentration (6.5 mg m−3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22–23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.
    Advances in Space Research 01/2006; · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlorophyll concentrations derived from satellite borne ocean color sensors data provide an idea of the distribution of phytoplanktons across the oceans which help us in understanding the spatial and temporal dynamics of phytoplanktons. The changes in the patterns of distribution and abundance of the planktons have significant impact on the entire ecosystem and play a key role in the global carbon cycle. In this paper, we have analyzed annual and seasonal chlorophyll concentrations retrieved from MODIS data for the periods March 2000–October 2003, which reveal the spatial and seasonal distribution of chlorophyll concentrations across the global oceans. Chlorophyll concentrations anomaly indicate that chlorophyll concentrations in almost all ocean regions responded similarly.
    Advances in Space Research 01/2009; 43(7):1090-1100. · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerous mesoscale eddies occur each year in the South China Sea (SCS), but their statistical characteristics are still not well documented. A Pacific basin-wide three-dimensional physical-biogeochemical model has been developed and the result in the SCS subdomain is used to quantify the eddy activities during the period of 1993–2007. The modeled results are compared with a merged and gridded satellite product of sea level anomaly by using the same eddy identification and tracking method. On average, there are about 32.9 ± 2.4 eddies predicted by the model and 32.8 ± 3.4 eddies observed by satellite each year, and about 52% of them are cyclonic eddies. The radius of these eddies ranges from about 46.5 to 223.5 km, with a mean value of 87.4 km. More than 70% of the eddies have a radius smaller than 100 km. The mean area covered by these eddies each year is around 160,170 km2, equivalent to 9.8% of the SCS area with water depths greater than 1000 m. Linear relationships are found between eddy lifetime and eddy magnitude and between eddy vertical extent and eddy magnitude, showing that strong eddies usually last longer and penetrate deeper than weak ones. Interannual variations in eddy numbers and the total eddy-occupied area indicate that eddy activities in the SCS do not directly correspond to the El Niño–Southern Oscillation events. The wind stress curls are thought to be an important but not the only mechanism of eddy genesis in the SCS.
    Journal of Geophysical Research 01/2010; 115. · 3.17 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014