Markov switching multinomial logit model: An application to accident-injury severities

School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907, United States
Accident Analysis & Prevention 01/2009; DOI: 10.1016/j.aap.2009.04.006
Source: PubMed

ABSTRACT In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of highway-crash data has long been used as a basis for influencing highway and vehicle designs, as well as directing and implementing a wide variety of regulatory policies aimed at improving safety. And, over time there has been a steady improvement in statistical methodologies that have enabled safety researchers to extract more information from crash databases to guide a wide array of safety design and policy improvements. In spite of the progress made over the years, important methodological barriers remain in the statistical analysis of crash data and this, along with the availability of many new data sources, present safety researchers with formidable future challenges, but also exciting future opportunities. This paper provides guidance in defining these challenges and opportunities by first reviewing the evolution of methodological applications and available data in highway-accident research. Based on this review, fruitful directions for future methodological developments are identified and the role that new data sources will play in defining these directions is discussed. It is shown that new methodologies that address complex issues relating to unobserved heterogeneity, endogeneity, risk compensation, spatial and temporal correlations, and more, have the potential to significantly expand our understanding of the many factors that affect the likelihood and severity (in terms of personal injury) of highway crashes. This in turn can lead to more effective safety countermeasures that can substantially reduce highway-related injuries and fatalities.
    Analytic Methods in Accident Research. 01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. Methods: This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. Results: The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. Conclusions: The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.
    Traffic Injury Prevention 07/2013; 14(5):544-553. · 1.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Referring to the 1 248 survey data of rural population in 14 provinces of China, the influencing factors of trip time choice were analyzed. Based on the basic theory of disaggregate model and its modelling method, nine grades were selected as the alternatives of trip time, the variables affecting time choice and the method getting their values were determined, and a multinomial logit (MNL) model was developed. Another 1 200 trip data of rural population were selected to testify the model’s validity. The result shows that the maximum absolute error of each period between calculated value and statistic is 3.6%, so MNL model has high calculation accuracy.
    Journal of Central South University. 20(1).

Full-text (2 Sources)

Available from
Jul 25, 2014