Markov switching multinomial logit model: An application to accident-injury severities

School of Civil Engineering, 550 Stadium Mall Drive, Purdue University, West Lafayette, IN 47907, United States
Accident Analysis & Prevention 01/2009; DOI: 10.1016/j.aap.2009.04.006
Source: PubMed

ABSTRACT In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. Methods: This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. Results: The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. Conclusions: The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.
    Traffic Injury Prevention 07/2013; 14(5):544-553. · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The severity of traffic-related injuries has been studied by many researchers in recent decades. However, previous research has seldom accounted for the effects of curbed outside shoulders on traffic-related injury severity. This study applies the zero-inflated ordered probit (ZIOP) model to evaluate the influences of curbed outside shoulders, speed limit change, as well as other traditional factors on the injury severity of single-vehicle crashes. Crash data from 2003 to 2007 in the Illinois Highway Safety Database were employed in this study. The ZIOP model assumes that injury severity comes from two distinct sources: injury propensity and injury severity when this crash falls into the injury prone category. The modeling results show that on one hand, single-vehicle crashes that occurring on roadways with curbed outside shoulders are more likely to be injury prone. On the other hand, the existence of a curb decreases the likelihood of severe injury if the crash was in the injury prone category. As a result, the marginal effect analysis implies that the presence of curbs is associated with a higher likelihood of no injury and minor injury involved crashes, but a lower likelihood of incapacitating injury and fatality involved crashes. In addition, in the presence of curbed outside shoulders, the change of speed limit adds no significant impact to the injury severity of single-vehicle crashes. Moreover, the modeling results also highlight some interesting effects caused by vehicle type, light and weather conditions, and drivers' characteristics, as well as crash type and location. Through a comprehensive evaluation of the modeling results, the authors find that the ZIOP model performs well relative to the traditional ordered probit (OP) model, and can serve as an alternative in future studies of crash injury severity.
    Accident; analysis and prevention 04/2013; 57C:55-66. · 1.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drivers' adaptation to weather-induced changes in roadway-surface conditions is a complex process that can potentially be influenced by many factors including age and gender. Using a mixed logit analysis, this research assesses the effects that age, gender, and other factors have on crash severities by considering single-vehicle crashes that occurred on dry, wet, and snow/ice-covered roadway surfaces. With an extensive database of single-vehicle crashes from Indiana in 2007 and 2008, estimation results showed that there were substantial differences across age/gender groups under different roadway-surface conditions. For example, for all females and older males, the likelihood of severe injuries increased when crashes occurred on wet or snow/ice surfaces-but for male drivers under 45 years of age, the probability of severe injuries decreased on wet and snow/ice surfaces - relative to dry-surface crashes. This and many other significant differences among age and gender groups suggest that drivers perceive and react to pavement-surface conditions in very different ways, and this has important safety implications. Furthermore, the empirical findings of this study highlight the value of considering subsets of data to unravel the complex relationships within crash-injury severity analysis.
    Accident; analysis and prevention 09/2011; 43(5):1852-63. · 1.65 Impact Factor

Full-text (2 Sources)

Available from
Jul 25, 2014