Stability analysis of natural convection in porous cavities through integral transforms

Laboratório de Transmissão e Tecnologia do Calor (LTTC), Programa de Engenharia Mecânica, EE, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Cx. Postal 68503, Rio de Janeiro, RJ, 21945-970, Brazil; Programa de Engenharia Metalúrgica e de Materiais, EE, COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, Cx. Postal 68503, Rio de Janeiro, RJ, 21945-970, Brazil
International Journal of Heat and Mass Transfer (Impact Factor: 2.52). 01/2002; DOI: 10.1016/S0017-9310(01)00231-9

ABSTRACT The onset of convection and chaos related to natural convection inside a porous cavity heated from below is investigated using the generalized integral transform technique (GITT). This eigenfunction expansion approach generates an ordinary differential system that is adequately truncated in order to be handled by linear stability analysis (LSA) as well as in full nonlinear form through the Mathematica software system built-in solvers. Lorenz's system is generated from the transformed equations by using the steady-state solution to scale the potentials. Systems with higher truncation orders are solved in order to obtain more accurate results for the Rayleigh number at onset of convection, and the influence of aspect ratio and Rayleigh number on the cell pattern transition from n to n+2 cells (n=1,3,5,…) is analyzed from both local and average Nusselt number behaviors. The qualitative dependence of the Rayleigh number at onset of chaos on the transient behavior and aspect ratio is presented for a low dimensional system (Lorenz equations) and its convergence behavior for increasing expansion orders is investigated.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ce travail concerne la convection naturelle au sein d'un système fluide-poreux en couche horizontale. On présente l'analyse de stabilité linéaire des modèles à un et deux domaines, avec diffusion visqueuse dans le milieu poreux. Nos résultats sont comparés avec ceux du modèle à deux domaines utilisant la formulation de Darcy. Un bon accord est observé entre les résultats des modèles à deux domaines, ce qui indique que le terme de Brinkman joue un rôle secondaire dans la stabilité. On montre que le modèle à un domaine peut conduire à des résultats sensiblement différents lorsque la transition entre fluide et le milieu poreux est décrite par une discontinuité des propriétés. Il faut alors modifier la formulation en effectuant la différentiation au sens des distributions. Ainsi, le modèle à un domaine conduit aux mêmes seuils de stabilité que les formulations à deux domaines. L'influence des paramètres caractéristiques sur la stabilité des systèmes thermique et thermosolutal est discutée.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection–diffusion equation. Moreover, large eddies are able to mix scalar quantities in a manner that is counter to the local gradient. In this work we present a semi-analytical solution for the three-dimensional steady-state advection–diffusion equation, considering non-local turbulence closure using the Generalized Integral Advection Diffusion Multilayer Technique (GIADMT). We report some examples of applications of the new solution for two different datasets and for a water tank experiment.
    Atmospheric Research 10/2008; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A stability analysis of thermal natural convection in superposed fluid and porous layers is carried out. The two-layer system is described using a one-domain formulation, and the eigenvalue problem resulting from the stability analysis is solved using the generalized integral transform technique (GITT). The numerical results confirm that the onset of convection can have a bimodal nature depending on the depth ratio. The influence of the dimensionless permeability and thermal diffusivity ratio are investigated.
    Numerical Heat Transfer Fundamentals 11/2006; 50(5). · 1.96 Impact Factor

Full-text (2 Sources)

1 Download