Article

Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea

Department of Earth Sciences, Rice University, Houston, TX, USA; Earth and Planetary Science Department, University of Tokyo, Tokyo, Japan; Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, USA; Active Fault Research Center, Geological Society of Japan, AIST, Tsukuba, Japan; Revised 6 February 2007. Accepted 15 April 2007. Available online 3 August 2007.
Deep Sea Research Part II Topical Studies in Oceanography (Impact Factor: 2.24). 01/2007; DOI: 10.1016/j.dsr2.2007.04.001

ABSTRACT Umitaka Spur, situated on an unusual collisional plate boundary along the eastern margin of the Japan Sea, hosts gas seeps, pock-marks, collapse structures, and gas hydrates. Piston cores were recovered from this ridge to understand carbon cycling, pore fluid gradients and authigenic mineralization above a methane-charged system. We present the chemistry of fluids and solids from three cores adjacent to seep locations. High fluxes of CH4 and alkalinity transport carbon from a deep zone of methanogenesis toward the seafloor. Methane, however, reacts with across a shallow sulfate–methane transition (SMT), which generates additional alkalinity and HS−. A fraction of these CH4 oxidation products form authigenic carbonate and pyrite. These minerals are not readily apparent from visual inspection of split cores, because they exist as micritic coatings on microfossils or as framboidal pyrite. They are, however, readily observed in chemical analyses as peaks of “labile” Ca, Sr, Ba or S in sediment at or near the SMT. Carbon inputs and outputs nicely balance across the SMT in all three cores if one considers four relevant fluxes: loss of alkalinity to the seafloor, addition of methane from below, addition of alkalinity from below, and carbonate precipitation. Importantly, in all cores, the magnitude of the fluxes decreases in this order. Although some carbon rising from depth forms authigenic carbonate, most (>80%) escapes to the ocean as alkalinity. Nonetheless, authigenic fronts in sediment on Umitaka Spur are a significant reservoir of inorganic carbon. Given calculated pore fluid fluxes for Ca and Sr, the fronts require tens of thousands of years to form, suggesting that the present state and loss of carbon represent long-lived processes.

0 Bookmarks
 · 
45 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient hydrocarbon migration within a sediment package leaves behind robust geological signatures in the biogenic and authigenic carbonate record. Here we apply Flow-Through Time Resolved Analyses (FT-TRA) to unravel the compositional changes in foraminifera from coastal fossil methane seeps exposed from Oregon to Vancouver Island: The Eocene–Oligocene Keasey Formation, the Oligocene–Miocene Pysht and Sooke Formations, and the Pliocene Quinault Formation. Our data show that secondary mineralization can be traced with the use of Mg/Ca ratios, which in altered foraminifera are significantly higher than the biogenic ratio (< 3 compared to values as high as 69 mol/mol).Analogous to the record in authigenic carbonate, secondary mineralization contains valuable information about seep characteristics and their geologic history. Data from the Quinault Formation reflect the influence of anaerobic oxidation of biogenic methane in both bleb (δ13C: − 29.8‰ to − 14.0‰) and foraminiferal (δ13C: − 43.0‰ to 2.0‰) carbonate. Oxygen isotopes from blebs and foraminifera indicate precipitation at bottom water temperatures in an environment comparable to conditions observed in modern seeps on the Oregon slope and elsewhere. The carbonates in these seeps are enriched in barium and strontium over biogenic values, and such elevated values may be used a diagnostic tool to identify methane-related carbonates.In contrast, in the Pysht and Sooke formations, carbonate precipitation (including secondary mineralization of foraminifera), was fueled by a thermogenic carbon source (δ13C: − 14 to 3.4‰). These carbonates reflect a more complex paragenetic history and suggest alteration driven by post-depositional warm and/or meteoric fluids. The high manganese (up to 12 mmol/mol in foraminifera and 60.1 mmol/mol in a carbonate nodule) and low oxygen isotope values (δ18O as low as − 7.7‰ in foraminifera and − 11.6‰ in a carbonate pavement) observed for the Pysht and Sooke samples are consistent with carbonates recovered from fault zones on the Oregon slope, and suggest the intriguing possibility that these carbonates may reflect manganese-dependent anaerobic methane oxidation.
    Earth and Planetary Science Letters 10/2010; · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates “from above”. As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.
    Geo-Marine Letters 32(5-6). · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The significance of the various carbon cycling pathways in driving the sharp sulfate methane transition zone (SMTZ) observed at many locations along continental margins is still a topic of debate. Unraveling these processes is important to our understanding of the carbon cycle in general and to evaluate whether the location of this front can be used to infer present and past methane fluxes from deep reservoirs (e.g., gas hydrate). Here we report the pore water data from the second Ulleung Basin Gas Hydrate Expedition and on the results of a box model that balances solute fluxes among different carbon pools and satisfies the observed isotopic signatures. Our analysis identifies a secondary methanogenesis pathway within the SMTZ, whereby 25–35 % of the dissolved inorganic carbon (DIC) produced by the anaerobic oxidation of methane (AOM) is consumed by CO2 reduction (CR). To balance this DIC consumption, a comparable rate of organic matter degradation becomes necessary, which in turn consumes a significant amount of sulfate. The fraction of sulfate consumed by AOM ranges from 70 to 90 %. Whereas a simple mass balance would suggest a one to one relationship between sulfate and methane fluxes; our isotopic considerations show that methane flux estimates based solely on sulfate data may be in error by as much as 30 %. Furthermore, the carbon cycling within the SMTZ is fueled by a significant contribution (10–40 %) of methane produced by CR just below the SMTZ. Therefore sulfate gradient cannot necessarily be used to infer methane contributions from gas hydrate reservoirs that may lay tens to hundreds of meters below the SMTZ.
    Biogeochemistry · 3.53 Impact Factor

Full-text (2 Sources)

View
35 Downloads
Available from
May 29, 2014