Event-related potentials and eyeblink responses in automatic and controlled processing: effects of age

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
Electroencephalography and Clinical Neurophysiology 06/1991; DOI: 10.1016/0013-4694(91)90098-O
Source: PubMed

ABSTRACT Seventeen young (mean age = 20.2 years old) and 16 elderly (mean age = 72.6 years old) women were tested with event-related potential (ERP) paradigms designed to elicit responses in reaction time tasks and to a starting noise burst. EEG was analyzed from 17 standard 10–20 electrode sites. Reaction time and performance data suggested that the elderly did not perform worse than the young. Nevertheless, the physiological responses of the elderly differed significantly from those of the young. While the task-dependent P3s at Pz were smaller in the elderly than in the young, the automatic P3 was smaller yet. The distribution of both types of P3 across the scalp was more uniform in the elderly than in the young. Single-trial analyses revealed that the P3 amplitude differences at Pz were not due to latency dispersal of single trials. Single-trial startle eye blink responses to intense noise bursts during the automatic paradigm were considerably less frequent in the elderly, although their individual startle blinks were actually larger. The data demonstrate that the electrophysiological responses of the elderly are different from the young both in tasks eliciting automatic responses and in tasks requiring controlled processing.

Download full-text


Available from: Judith M Ford, Jun 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Healthy aging is typically associated with impairment in various cognitive abilities such as memory, selective attention or executive functions. Less well observed is the fact that also language functions in general and speech processing in particular seems to be affected by age. This impairment is partly caused by pathologies of the peripheral auditory nervous system and central auditory decline and in some part also by a cognitive decay. This cross-sectional electroencephalography (EEG) study investigates temporally early electrophysiological correlates of auditory related selective attention in young (20-32 years) and older (60-74 years) healthy adults. In two independent tasks, we systematically modulate the subjects' focus of attention by presenting words and pseudowords as targets and white noise stimuli as distractors. Behavioral data showed no difference in task accuracy between the two age samples irrespective of the modulation of attention. However, our work is the first to show that the N1-and the P2 component evoked by speech and nonspeech stimuli are specifically modulated in older adults and young adults depending on the subjects' focus of attention. This finding is particularly interesting in that the age-related differences in AEPs may be reflecting levels of processing that are not mirrored by the behavioral measurements.
    01/2014; 4(1):21-8. DOI:10.1002/brb3.188
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both physiological and behavioral studies provide evidence to suggest that deficits in frontal cortical control circuits may contribute to the risk for developing alcohol dependence. Event-related potential (ERP) and eye blink responses to startle and short delay prepulse-plus-startle stimuli, and psychiatric diagnoses were investigated in young adult (age 18-30 years) men (n=135) and women (n=205) Mexican Americans. Women displayed a significant increase in the amplitude of the eye blink response to both the startle and pre-pulse-plus-startle stimuli. None of the psychiatric diagnoses were associated with differences in eye blink responses. ERP responses to the startle and prepulse-plus startle stimuli included a negative polarity wave at approximately 400 ms that was of the highest amplitude in the frontal leads (N4S). Women were found to have significantly higher amplitude N4S responses than men. Participants with alcohol dependence demonstrated significantly less inhibition and more facilitation of the N4S component by the pre-pulse stimuli. This finding was not associated with a diagnosis of: any other drug dependence disorder (including nicotine), anxiety or affective disorder, or conduct/antisocial personality disorder. The present study suggests that gender and a lifetime diagnosis of alcohol dependence may selectively contribute to this frontal late wave electrophysiological response to prepulse-plus-startle stimuli.
    Psychiatry Research 07/2011; 188(2):237-44. DOI:10.1016/j.psychres.2011.04.010 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most cognitive neuroscientific research exploring the nature of age-associated compensatory mechanisms has compared old adults (high vs. average performers) to young adults (not split by performance), leaving ambiguous whether findings are truly age-related or reflect differences between high and average performers throughout the life span. Here, we examined differences in neural activity (as measured by ERPs) that were generated by high vs. average performing old, middle-age, and young adults while processing novel and target events to investigate the following three questions: (1) Are differences between cognitively high and average performing subjects in the allocation of processing resources (as indexed by P3 amplitude) specific to old subjects, or found throughout the adult life span? (2) Are differences between cognitively high and average performing subjects in speed of processing (as indexed by target P3 latency) of similar magnitude throughout the adult life span? (3) Where along the information processing stream does the compensatory neural activity attributed to cognitively high performing old subjects begin to take place? Our results suggest that high performing old adults successfully manage the task by a compensatory neural mechanism associated with the modulation of controlled processing and the allocation of more resources, whereas high performing younger subjects execute the task more efficiently with fewer resources. Differences between cognitively high and average performers in processing speed increase with age. Middle-age seems to be a critical stage in which substantial differences in neural activity between high and average performers emerge. These findings provide strong evidence for different patterns of age-related changes in the processing of salient environmental stimuli, with cognitive status serving as a key mediating variable.
    NeuroImage 02/2008; 39(1):441-54. DOI:10.1016/j.neuroimage.2007.08.034 · 6.13 Impact Factor