ERP and eyeblink responses in automatic and controlled processing: Effects of age

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
Electroencephalography and Clinical Neurophysiology 06/1991; 78(5):361-377. DOI: 10.1016/0013-4694(91)90098-O
Source: PubMed

ABSTRACT Seventeen young (mean age = 20.2 years old) and 16 elderly (mean age = 72.6 years old) women were tested with event-related potential (ERP) paradigms designed to elicit responses in reaction time tasks and to a starting noise burst. EEG was analyzed from 17 standard 10–20 electrode sites. Reaction time and performance data suggested that the elderly did not perform worse than the young. Nevertheless, the physiological responses of the elderly differed significantly from those of the young. While the task-dependent P3s at Pz were smaller in the elderly than in the young, the automatic P3 was smaller yet. The distribution of both types of P3 across the scalp was more uniform in the elderly than in the young. Single-trial analyses revealed that the P3 amplitude differences at Pz were not due to latency dispersal of single trials. Single-trial startle eye blink responses to intense noise bursts during the automatic paradigm were considerably less frequent in the elderly, although their individual startle blinks were actually larger. The data demonstrate that the electrophysiological responses of the elderly are different from the young both in tasks eliciting automatic responses and in tasks requiring controlled processing.

Download full-text


Available from: Judith M Ford, Sep 28, 2015
12 Reads
  • Source
    • "The same inconsistency can be found concerning the P2 component. Whereas some authors found increased peak amplitudes in older adults (Pfefferbaum et al. 1984; Ford and Pfefferbaum 1991; Friedman et al. 1993; Anderer et al. 1998), others do not confirm such an altered AEP pattern (Brown et al. 1983; Picton et al. 1984; Barrett et al. 1987). This study aims to investigate age-related differences in the neural processing of spoken language during different modulations of the subject's selective attention. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Healthy aging is typically associated with impairment in various cognitive abilities such as memory, selective attention or executive functions. Less well observed is the fact that also language functions in general and speech processing in particular seems to be affected by age. This impairment is partly caused by pathologies of the peripheral auditory nervous system and central auditory decline and in some part also by a cognitive decay. This cross-sectional electroencephalography (EEG) study investigates temporally early electrophysiological correlates of auditory related selective attention in young (20-32 years) and older (60-74 years) healthy adults. In two independent tasks, we systematically modulate the subjects' focus of attention by presenting words and pseudowords as targets and white noise stimuli as distractors. Behavioral data showed no difference in task accuracy between the two age samples irrespective of the modulation of attention. However, our work is the first to show that the N1-and the P2 component evoked by speech and nonspeech stimuli are specifically modulated in older adults and young adults depending on the subjects' focus of attention. This finding is particularly interesting in that the age-related differences in AEPs may be reflecting levels of processing that are not mirrored by the behavioral measurements.
    Brain and Behavior 03/2014; 4(1):21-8. DOI:10.1002/brb3.188 · 2.24 Impact Factor
  • Source
    • "(e.g., Smith et al., 1980; Pekkonen et al., 1995; Bertoli et al., 2005; Kovacevic et al., 2005; Fabiani et al., 2006; Alain and Snyder, 2008; Ross and Tremblay, 2009; Soros et al., 2009; Ross et al., 2010; Lister et al., 2011; Alain et al., 2012) Similar age-related increases in the N1 amplitude have been reported (e.g., Anderer et al., 1996; Chao and Knight, 1997; Alain and Woods, 1999; Amenedo and Diaz, 1999; Harkrider et al., 2006; Ross and Tremblay, 2009; Soros et al., 2009), albeit with less consistency (for a failure to find age difference see, Pfefferbaum et al., 1980; Smith et al., 1980; Picton et al., 1984; Barrett et al., 1987; Iragui et al., 1993; Bertoli et al., 2002; Tremblay et al., 2004; Kovacevic et al., 2005; Lister et al., 2011). The effect of age on the P2 amplitude is more equivocal with some studies reporting no age difference (Ford et al., 1979; Picton et al., 1984; Barrett et al., 1987; Iragui et al., 1993; Tremblay et al., 2004) while others observing smaller (Goodin et al., 1978; Smith et al., 1980; Ross and Tremblay, 2009) or larger (Pfefferbaum et al., 1980; Ford and Pfefferbaum, 1991; Fabiani et al., 2006; Alain and Snyder, 2008) amplitudes in older adults. However, the effects of age on the P2 latency are more consistent, with most studies reporting an age-related increase in P2 latency (e.g., Goodin et al., 1978; Iragui et al., 1993; Tremblay et al., 2004; Alain and McDonald, 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is often accompanied by hearing loss, which impacts how sounds are processed and represented along the ascending auditory pathways and within the auditory cortices. Here, we assess the impact of mild binaural hearing loss on the older adults' ability to both process complex sounds embedded in noise and to segregate a mistuned harmonic in an otherwise periodic stimulus. We measured auditory evoked fields (AEFs) using magnetoencephalography while participants were presented with complex tones that had either all harmonics in tune or had the third harmonic mistuned by 4 or 16% of its original value. The tones (75 dB sound pressure level, SPL) were presented without, with low (45 dBA SPL), or with moderate (65 dBA SPL) Gaussian noise. For each participant, we modeled the AEFs with a pair of dipoles in the superior temporal plane. We then examined the effects of hearing loss and noise on the amplitude and latency of the resulting source waveforms. In the present study, results revealed that similar noise-induced increases in N1m were present in older adults with and without hearing loss. Our results also showed that the P1m amplitude was larger in the hearing impaired than in the normal-hearing adults. In addition, the object-related negativity (ORN) elicited by the mistuned harmonic was larger in hearing impaired listeners. The enhanced P1m and ORN amplitude in the hearing impaired older adults suggests that hearing loss increased neural excitability in auditory cortices, which could be related to deficits in inhibitory control.
    Frontiers in Systems Neuroscience 01/2014; 8:8. DOI:10.3389/fnsys.2014.00008
  • Source
    • "The amplitude of the P300 startle ERP has been demonstrated to respond to both PPI and PPF, task determinants, as well as allocation of attention, changes in arousal, and emotional context. (see Roth et al., 1982,1984; Putnam and Roth 1987, 1990; Ford and Pfefferbaum, 1991; Suguwara et al., 1994; Hirano et al 1996; Schupp, 1997, Cuthbert et al., 1998; Ornitz et al., 2001). The neural generators of the P300 to startling noises are not entirely known. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Both physiological and behavioral studies provide evidence to suggest that deficits in frontal cortical control circuits may contribute to the risk for developing alcohol dependence. Event-related potential (ERP) and eye blink responses to startle and short delay prepulse-plus-startle stimuli, and psychiatric diagnoses were investigated in young adult (age 18-30 years) men (n=135) and women (n=205) Mexican Americans. Women displayed a significant increase in the amplitude of the eye blink response to both the startle and pre-pulse-plus-startle stimuli. None of the psychiatric diagnoses were associated with differences in eye blink responses. ERP responses to the startle and prepulse-plus startle stimuli included a negative polarity wave at approximately 400 ms that was of the highest amplitude in the frontal leads (N4S). Women were found to have significantly higher amplitude N4S responses than men. Participants with alcohol dependence demonstrated significantly less inhibition and more facilitation of the N4S component by the pre-pulse stimuli. This finding was not associated with a diagnosis of: any other drug dependence disorder (including nicotine), anxiety or affective disorder, or conduct/antisocial personality disorder. The present study suggests that gender and a lifetime diagnosis of alcohol dependence may selectively contribute to this frontal late wave electrophysiological response to prepulse-plus-startle stimuli.
    Psychiatry Research 07/2011; 188(2):237-44. DOI:10.1016/j.psychres.2011.04.010 · 2.47 Impact Factor
Show more