Article

Effects of organic acids on the dissolution of orthoclase at 80°C and pH 6

The University of Michigan, Department of Geological Sciences, Ann Arbor, MI 48109-1063, USA
Chemical Geology (Impact Factor: 3.48). 10/1996; 132(1-4):91-102. DOI: 10.1016/S0009-2541(96)00044-7

ABSTRACT The dissolution of K-rich feldspar (orthoclase), quartz and Al(OH)3 was investigated at 80°C and pH 6 in buffered solutions of organic acids. Previous studies of the effects of organic acids (OA) on feldspar dissolution have typically been conducted in acidic, low-ionic strength solutions often under conditions which preclude isolation of effects of pH from those due to organic acids. Our experiments were conducted at constant pH, temperature, ionic strength, and buffer composition to allow direct comparison of experiments with and without OA. The dissolution experiments were conducted under closed-system conditions to: (1) determine the magnitude of mineral solubility enhancement by OA; (2) examine changes in reaction stoichiometry as equilibrium is approached; and (3) investigate the effects of OA on secondary mineral precipitation.The carboxylic acid species, oxalate and citrate, significantly enhanced the dissolution of orthoclase at pH 6. The concentrations of Si and Al in 10 m M oxalate and citrate solutions were nearly 3 times that in solutions of acetate buffer without oxalate or citrate. Aluminum was below the limit of detection ( < 0.007 mM) in the acetate buffer alone. Citrate increased the release of Si and Al from orthoclase more than did oxalate at the same concentration. Equilibrium modeling indicates that solutions with oxalate and citrate attained supersaturation with respect to gibbsite, kaolinite, and smectite, and saturation with respect to quartz. Nevertheless, orthoclase dissolution remained congruent with respect to Si and Al release.Separate experiments using pure quartz and Al(OH)3 suggest that a mechanism other than formation of Si-organic complexes may be involved in the OA-enhanced release of Si from orthoclase. The increase in dissolved silica was modest in 10 mM oxalate and 10 mM citrate solutions reacted with quartz, and did not increase with increasing OA concentration. The solubility of quartz was similar in solutions of oxalate and citrate. In contrast, Al(OH)3 dissolution was 50% greater in citrate than in oxalate, similar to the behavior of orthoclase. Citrate may be more effective in dissolving orthoclase than oxalate due to a stronger interaction between citrate and Al, rather than due to a synergistic effect of Al-citrate and Si-citrate complexes. These results have implications for the mass transport of Si and Al in diagenetic environments.

1 Follower
 · 
417 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The steady-state, far-from-equilibrium dissolution rates of nine distinct plagioclases ranging in composition from An2 to An89 were measured in mixed flow reactors at 22 ± 2 °C and pH from 2 to 11. The dissolution rates of all plagioclases based on silica release show a common U-shaped behaviour as a function of pH, where rates decrease with increasing pH at acid condition but rise with increasing pH at alkaline conditions. Consistent with literature findings, constant pH plagioclase dissolution rates increase with increasing anorthite content at acidic conditions; measured anorthite dissolution rates are ∼2.5 orders of magnitude faster than those of albite at pH ∼2. Perhaps more significantly, rates are independent of plagioclase composition at alkaline conditions. Interpretation and data fitting suggests that plagioclase dissolution rates are consistent with their control by the detachment of Si-rich activated complexes formed by the removal of Al from the mineral framework. Taking account of this mechanism and transition state theory yields equations describing plagioclase dissolution rates (r+) as a function of both the mineral and aqueous fluid compositions found in natural Earth surface systems. For pH ⩾ 6 rates are consistent with Log(r+/(mol/cm2/s))=0.35Log(aH+3/aAl3+)-11.53 Log(r+/(mol/cm2/s))=nacidLog(aH+3/aAl3+)+0.033An%-14.77 ai i n acid nacid=0.004An%+0.05nacid=0.004An%+0.05
    Geochimica et Cosmochimica Acta 08/2014; 139:154–172. DOI:10.1016/j.gca.2014.04.028 · 4.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of CO2 solubility-trapping and mineral-trapping by microbial-mediated process was investigated by lab experiments in this study. The results verified that microbes could adapt and keep relatively high activity under extreme subsurface environment (pH<5, temperature>50°C, salinity>1.0mol/L). When microbes mediated in the CO2-brine-sandstone interaction, the CO2 solubility-trapping was enhanced. The more biomass of microbe added, the more amount of CO2 dissolved and trapped into the water. Consequently, the corrosion of feldspars and clay minerals such as chlorite was improved in relative short-term CO2-brine-sandstone interaction, providing a favorable condition for CO2 mineral-trapping. Through SEM images and EDS analyses, secondary minerals such as transition-state calcite and crystal siderite were observed, further indicating that the microbes played a positive role in CO2 mineral trapping. As such, bioaugmentation of indigenous microbes would be a promising technology to enhance the CO2 capture and storage in such deep saline aquifer like Erdos, China.
    Marine Pollution Bulletin 07/2014; 85(1). DOI:10.1016/j.marpolbul.2014.06.019 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bench-scale experiments were conducted to determine rates and patterns of coupled organic matter infusion and weathering in a San Francisco volcanic field (Flagstaff, AZ) basalt sample under experimentally-modeled biotic and abiotic condition and to inform larger-scale collaborative studies at the landscape evolution observatory (LEO), Biosphere 2 (Tucson, AZ), where the same basaltic media is being used in a synthetic hillslope experiment. We postulated that mineral transformations depend significantly on the presence of organic carbon compounds including dissolved natural organic matter (DOM), with organic C simultaneously imprinting the chemical and mineralogical properties of primary and secondary solids undergoing incongruent dissolution. The present work reports on solute releases from Flagstaff basalt (FB) along laboratory-controlled gradients in DOM type and concentration. Loamy sand textured FB was subjected to flow-through, saturated column dissolution experiments using influent solutions with and without DOM compounds. Solutions included Ponderosa pine forest soil O-horizon extracts at three target concentrations: 7, 35, and 70 mg L−1 C, malic acid (MA) solutions at 7, 35, 70, and 140 mg L−1 C, and a control without DOM but having comparable inorganic solution composition. Chemical denudation rates for FB dissolution products were calculated from the concentration difference between outflow and inflow solutions. In addition, changes in the composition of the solid phase over the course of the experiment were determined using X-ray diffraction (XRD), X-ray fluorescence (XRF), and selective dissolution (SE). Column experiments supported dissolution rates derived from the literature and indicated a potentially strong effect of plant-derived organic ligands on mineral dissolution congruency and secondary phase precipitation. Both malic acid and DOM enhanced basalt dissolution, with malic acid having larger effect on per unit C basis. The largest relative effect of organic ligands was observed for Fe and Ti. Si/Al and Si/Fe chemical denudation rate ratios indicated non-stoichiometric dissolution, consistent with the observed precipitation of secondary phases, as confirmed by XRD and SE. DOM enhanced precipitation of secondary phases but this effect decreased with increase in amount of DOM added. Stoichiometry of the outflow solutions indicated that basaltic glass was preferentially dissolved in agreement with previous modeling predictions. Results suggest that biotic colonization of FB in the large-scale, long-term LEO experiment is likely to strongly influence the rate and congruency of FB weathering reactions and their distribution across the convergent hillslopes.
    Geochimica et Cosmochimica Acta 08/2014; 139:508–526. DOI:10.1016/j.gca.2014.05.010 · 4.25 Impact Factor

Preview

Download
8 Downloads