Determining Lyapunov exponents from a time series

Department of Physics, University of Texas, Austin, Texas 78712, USA
Physica D Nonlinear Phenomena (Impact Factor: 1.83). 07/1985; DOI: 10.1016/0167-2789(85)90011-9

ABSTRACT We present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior, are related to the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined to be chaotic. Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the long-term growth rate of small volume elements in an attractor. The method is tested on model systems with known Lyapunov spectra, and applied to data for the Belousov-Zhabotinskii reaction and Couette-Taylor flow.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that for non-linear Hamiltonian systems there exist ordered regions with quasi-periodic orbits and regions with chaotic orbits. Usually, these regions are distributed in the phase space in very complicated ways, which often makes it very difficult to distinguish between them, especially when we are dealing with many degrees of freedom. Recently , a new, very fast and easy to compute indicator of the chaotic or ordered nature of orbits has been introduced by Zotos (2012), the so-called "Fast Norm Vector Indicator (FNVI)". Using the double pendulum system, in the paper we present a detailed numerical study com-porting the advantages and the drawbacks of the FNVI to those of the Smaller Alignment Index (SALI), a reliable indicator of chaos and order in Hamiltonian systems. Our effort was focused both on the traditional behavior of the FNVI for regular and fully developed chaos but on the "sticky" orbits and on the quantitative criterion proposed by Zotos, too.
    SEECCM III 3rd South-East European Conference on Computational Mechanics- an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece; 06/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstrakt Detailná analýza časových radov koronálneho indexu, relatívneho čísla slnečných škvŕn , erupčného indexu a rádiového žiarenia na 10.7 cm ukazuje, že slnečná aktivita je chaotický systém. Predpovedateľnosť koronálneho indexu je 4,8 roka a relatívneho čísla slnečných škvŕn 3,0 roka podľa práce Karlovský 1996, toku rádiového žiarenia 4,0 roku a erupčného indexu 57 dní, teda približne 2 mesiace, predpovedateľnosť indexu Mg II (core to wing 280 nm) 385 dní , iradiancie Lyman a 454 dní. 1. ÚVOD So slnečnou aktivitou súvisí jej predpovedateľnosť, teda to, ako môžeme určité indexy určiť, a s akou presnosťou do budúcna. Takéto práce boli prirodzene už v minulosti, ale ukázalo sa , že výsledky nie sú uspokojivé. Ako príklad si môžeme všimnúť graf z práce Ambrož a Křivský (1979). Na obrázku 1 vidíme, že práce rôznych autorov dávajú extrémne rozdielne výsledky a predpovedať dĺžku trvania a maximum 21.cyklu slnečnej aktivity v relatívnom čísle je prakticky nemožné. Značná nejednotnosť existuje aj v predpovediach pre 24.cyklus. Vidíme to na obrázku 2, ktorý sa pre svoj vzhľad volá klavírový diagram. Je z práce Svalgaard L. (2010) Obr.1 Predpoveď relatívneho čísla v 21.cykle
    Slovenská ústredná hvezdáreň v Hurbanove 22. celoštátny slnečný seminár, hotel ARMAN v Nižnej nad Oravou.; 05/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a simple, very fast and easy to compute qualitative indicator of the chaotic or ordered nature of orbits in dynamical systems was proposed by Waz et al (2009), the so-called " Asymmetry coefficients ". The indicator has been obtained from an analysis of the statistical behavior of an ensemble derived from the time dependence of selected quantities characterizing the system's motion. It was found that for an ordered orbit the indicator converges to zero while for a chaotic orbit no sign of convergence can be observed. Using the Henon-Heiles Hamiltonian system and the Smaller Alignment Index method, in our paper we proposed a numerical criterion in order to quantify the results obtained by the " Asymmetry coefficients " method. This criterion helped us to define threshold values between regularity and chaoticity and to construct detailed phase-space portraits, where the ordered and chaotic regions are clearly distinguished. Additionally, exploiting the rapidity of the method, we showed how it can be used to identify " sticky " orbits or tiny regions of order and chaos.
    6th Chaotic Modelling and Simulation International Conference, Istanbul, Turkey; 06/2013

Full-text (3 Sources)

Available from
May 16, 2014