Localization of spontaneous emission in front of a mirror

Department of Chemistry, Ultrafast Laser and Spectroscopy Laboratory, University of Groninge, Nijenborgh 16, 9747 AG Groningen, The Netherlands
Optics Communications (Impact Factor: 1.44). 01/1989; DOI: 10.1016/0030-4018(89)90149-1
Source: OAI

ABSTRACT We show that the fluorescence emitted in front of a mirror exhibits angular and spectral localization effects that are caused by self-interference in the spontaneous emission from a Wiener-fringe pattern. A semi-classical description is given and found to be in good agreement with the observations.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Spectral domain phase microscopy (SDPM) has been reported in the literature as a functional extension to low-coherence interferometry, which enables nanoscale measurement of a scatter's displacement. The signal in SDPM is generated from structural images that lack molecular specificity. This paper investigates the expansion of phase analysis to fluorescence self-interference signals to provide functional information about a sample. Spectral domain fluorescence coherence phase microscopy is demonstrated for nanoscale resolution motion detection of fluorescent particles with a signal-to-noise ratio limited resolution of ~10 nm. This paper demonstrates the feasibility of combining phase processing with fluorescence self-interference, which may be useful for future applications such as cell rheology.
    Applied Optics 04/2011; 50(12):1798-804. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of fluorescence radiation is of fundamental importance for tackling measurement problems in the life sciences, with recent demonstrations of probing biological systems at the nanoscale. Usually, fluorescent light-based tools and techniques use the intensity of light waves, which is easily measured by detectors. However, the phase of a fluorescence wave contains subtle, but no less important, information about the wave; yet, it has been largely unexplored. Here, we introduce the concept of fluorescence interferometry to allow the measurement of phase information of fluorescent light waves. In principle, fluorescence interferometry can be considered a unique form of optical low-coherence interferometry that uses fluorophores as a light source of low temporal coherence. Fluorescence interferometry opens up new avenues for developing new fluorescent light-based imaging, sensing, ranging, and profiling methods that to some extent resemble interferometric techniques based on white light sources. We propose two experimental realizations of fluorescence interferometry that detect the interference pattern cast by the fluorescence fields. This article discusses their measurement capabilities and limitations and compares them with those offered by optical low-coherence interferometric schemes. We also describe applications of fluorescence interferometry to imaging, ranging, and profiling tasks and present experimental evidences of wide-field cross-sectional imaging with high resolution and large range of depth, as well as quantitative profiling with nanometer-level precision. Finally, we point out future research directions in fluorescence interferometry, such as fluorescence tomography of whole organisms and the extension to molecular interferometry by means of quantum dots and bioluminescence.
    Annals of the New York Academy of Sciences 02/2008; 1130:68-77. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new method for high-resolution, three-dimensional fluorescence imaging. In contrast to beam-scanning confocal microscopy, where the laser focus must be scanned both laterally and axially to collect a volume, we obtain depth information without the necessity of depth scanning. In this method, the emitted fluorescence is collected in the backward direction and is sent through a phase plate that encodes the depth information into the phase of a spectrally resolved interference pattern. We demonstrate that decoding this phase information allows for depth localization accuracy better than 4 µm over a 500 µm depth-of-field. In a high numerical aperture configuration with a much smaller depth of field, a localization accuracy of tens of nanometers can be achieved. This approach is ideally suited for miniature endoscopes, where space limitations at the endoscope tip render depth scanning difficult. We illustrate the potential for 3D visualization of complex biological samples by constructing a three-dimensional volume of the microvasculature of ex vivo murine heart tissue from a single 2D scan.
    Optics Express 07/2012; 20(14):15253-62. · 3.55 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014