Article

Petrogenesis and tectonic setting of late Precambrian ensimatic volcanic rocks, central eastern desert of Egypt

Department of Terrestrial Magnetism, 5241 Broad Branch Road N.W., Washington, DC 20015 U.S.A.
Precambrian Research (Impact Factor: 6.02). 12/1981; 16(3):195-230. DOI: 10.1016/0301-9268(81)90013-9

ABSTRACT Early stages in the geologic evolution of the central eastern desert of Egypt (CED) reflect an intense episode of ensimatic volcanic activity similar to modern magmatism of the ocean floors and island arcs. This paper reports results from studies of the petrology and petrogenesis, and interprets the significance of these Late Precambrian volcanic rocks.A three-fold stratigraphy is preserved in the basement of the CED. A basal section of oceanic crust includes ultramafics, gabbros and pillowed basalts. These older metavolcanics (OMV) are conformably succeeded by dominantly volcanogenic metasediments, which are in turn succeeded by a dominantly andesitic, calc-alkaline sequence of younger metavolcanics (YMV). The OMV and YMV are largely restricted to the CED in Egypt, but analogous terranes are found in northern Arabia. (40–400 ppm) and Ni (30–260 ppm). They are poor in K2O (0.05–0.92%), Rb (0.3–5.0 ppm) and Ba (11–89 ppm). On Ti-Zr-Cr-V-Ni-P discriminant diagrams, the OMV plot in the field of modern abyssal tholeiites. High K/Rb (450–1800) and light REE depletions support this inference, although K/Ba (25–45) is lower than modern mid-ocean ridge basalts (MORB). The sum of OMV geochemical characteristics requires that these magmas were derived by the fractional fusion of the mantle. It is suggested that the OMV were generated by 20–25% fractional melting of previously depleted mantle at depths of less than 60 km. Relatively little fractionation accompanied ascent to the surface, where the OMV were erupted in a primitive crustal environment, either a small oceanic rift or a back-arc basin.Metamorphism of the YMV resulted in little elemental redistribution. These andesites have sub-alkaline clinopyroxenes and major-element geochemical characteristics indistinguishable from modern calc-alkaline andesites. YMV andesites in the central and western CED have K/Rb = 400–600, K/Ba = 20–40 and are light REE-enriched and heavy REE depleted. High concentrations of Cr (50–150 ppm) and Ni (20–100 ppm) and low initial 87Sr/86Sr ratios (0.7028–0.7030) indicate that these magmas were generated by melting in the mantle. Modelling studies and consideration of experimental data indicate that these andesites were formed by 2–10% fractional fusion of hydrous, undepleted, garnet therzolite at depths of 65 km or more in the mantle.The data show that an intense episode of instability, convection, and widespread melting occurred in the mantle beneath Afro-Arabia at the end of the Precambrian.

0 Followers
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kid Group is one of the few exposures of Neoproterozoic metavolcano-sedimentary rocks in the basement of southern Sinai in the northernmost Arabian–Nubian Shield. It is divided into the mostly metamorphosed volcaniclastic Melhaq and siliciclastic Um Zariq formations in the north and the mostly volcanic Heib and Tarr formations in the south. The Heib, Tarr, and Melhaq formations reflect an intense episode of igneous activity and immature clastic deposition associated with core-complex formation during Ediacaran time, but Um Zariq metasediments are relicts of an older (Cryogenian) sedimentary sequence. The latter yielded detrital zircons with concordant ages as young as 647 ± 12 Ma, which may indicate that the protolith of Um Zariq schist was deposited after ~ 647 Ma but 19 concordant zircons gave a 206Pb/238U weighted mean age of 813 ± 6 Ma, which may represent the maximum depositional age of this unit. In contrast, a cluster of 11 concordant detrital zircons from the Melhaq Formation yield a weighted mean 206Pb/238U age of 615 ± 6 Ma. Zircons from Heib Formation rhyolite clast define a 206Pb/238U weighted mean age of 609 ± 5 Ma, which is taken to approximate the age of Heib and Tarr formation volcanism. Intrusive syenogranite sample from Wadi Kid yields a 206Pb/238U weighted mean age of 604 ± 5 Ma. These constraints indicate that shallow-dipping mylonites formed between 615 ± 6 Ma and 604 ± 5 Ma. Geochemical data for volcanic samples from the Melhaq and Heib formations and the granites show continuous major and trace element variations corresponding to those expected from fractional crystallization. The rocks are enriched in large ion lithophile and light rare earth elements, with negative Nb anomalies. These reflect magmas generated by melting of subduction-modified lithospheric mantle, an inference that is further supported by εNd(t) = + 2.1 to + 5.5. This mantle source obtained its trace element characteristics by interaction with fluids and melts from subducting oceanic crust during the Late Cryogenian time, prior to terminal collision between fragments of East and West Gondwana at ~ 630 Ma. Positive εNd(t) values and the absence of pre-Ediacaran zircons in all but Um Zariq metasediments indicate minor interaction with Cryogenian and older crust. A model of extensional collapse following continental collision, controlled mainly by lithospheric delamination and slab break-off is suggested for the origin of the post-collision volcanics and granites at Wadi Kid. No evidence of pre-Neoproterozoic sources was found. Kid Group Ediacaran volcanic rocks are compositionally and chronologically similar to the Dokhan Volcanics of NE Egypt, which may be stratigraphic equivalents.
    Lithos 11/2012; 154:147–165. DOI:10.1016/j.lithos.2012.07.003 · 3.65 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Phased Array L-band Synthetic Aperture Radar (PALSAR) images covering the Um Rus area in the Central Eastern Desert of Egypt were evaluated for mapping geologic structure, lithology, and gold-related alteration zones. The study area is covered by Pan-African basement rocks including gabbro and granodiorite intruded into a variable mixture of metavolcanics and metasediments. The first three principal component analyses (PCA1, PCA2, PCA3) in a Red–Green–Blue (RGB) of the visible through shortwave-infrared (VNIR+SWIR) ASTER bands enabled the discrimination between lithological units. The results show that ASTER band ratios ((2+4)/3, (5+7)/6, (7+9)/8) in RGB identifies the lithological units and discriminates the granodiorite very well from the adjacent rock units.The granodiorites are dissected by gold-bearing quartz veins surrounded by alteration zones. The microscopic examination of samples collected from the alteration zones shows sericitic and argillic alteration zones. The Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification methods were applied using the reference spectra of the USGS spectral library. The results show that these classification methods are capable of mapping the alteration zones as indicated by field verification work. The PALSAR image was enhanced for fracture mapping using the second moment co-occurrence filter. Overlying extracted faults and alteration zone classification images show that the N30E and N–S fractures represent potential zones for gold exploration. It is concluded that the proposed methods can be used as a powerful tool for ore deposit exploration.
    Advances in Space Research 01/2012; 49(1). DOI:10.1016/j.asr.2011.09.024 · 1.24 Impact Factor

Preview