Article

Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host

University of Burgundy, Dijon, Bourgogne, France
Animal Behaviour (Impact Factor: 3.07). 11/2007; 74(5):1311-1317. DOI: 10.1016/j.anbehav.2007.02.027

ABSTRACT Fish acanthocephalans can modify the antipredator behaviour of their intermediate hosts in response to cues from fish predators. However, it is still unclear whether such behavioural changes are adaptive, or are just the consequence of infection. We addressed this question through studying two acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus, and their intermediate host, the amphipod Gammarus pulex. Pomphorhynchus laevis completes its cycle in a freshwater fish, whereas P. minutus exploits waterbirds as final hosts. We first assessed vulnerability of infected and uninfected gammarids to predation by bullheads, Cottus gobio. Pomphorhynchus laevis-infected gammarids were more susceptible to predation than uninfected ones when a refuge was available, whereas no selective predation on P. minutus-infected individuals was recorded, independently of refuge availability. We then quantified refuge use when a bullhead was present in an enclosure or when the enclosure was empty. Individuals of each group significantly increased refuge use in the presence of a bullhead. However, a larger proportion of P. laevis-infected gammarids remained out of the refuge in the presence of a predator, compared with uninfected controls, whereas no such effect was observed in P. minutus-infected ones. Finally, we assessed reaction to bullhead olfactory cues, using a Y-maze apparatus. Pomphorhynchus laevis-infected gammarids spent significantly more time in the predator-scented arm, whereas the reverse was observed in uninfected ones. Polymorphus minutus-infected individuals, however, did not differ from uninfected controls. We discuss our results in relation with the adaptiveness of host manipulation by parasites.

Download full-text

Full-text

Available from: Frank Cézilly, Feb 18, 2014
0 Followers
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research.
    Frontiers in Microbiology 06/2014; DOI:10.3389/fmicb.2014.00248 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Larvae of many trophically-transmitted parasites alter the behaviour of their intermediate host in ways that increase their probability of transmission to the next host in their life cycle. Before reaching a stage that is infective to the next host, parasite larvae may develop through several larval stages in the intermediate host that are not infective to the definitive host. Early predation at these stages results in parasite death, and it has recently been shown that non-infective larvae of some helminths decrease such risk by enhancing the anti-predator defences of the host, including decreased activity and increased sheltering. However, these behavioural changes may divert infected hosts from an optimal balance between survival and foraging (either seeking food or a mate). In this study, this hypothesis was tested using the intermediate host of the acanthocephalan parasite Pomphorhynchus laevis, the freshwater amphipod Gammarus pulex. We compared activity, refuge use, food foraging and food intake of hosts experimentally infected with the non-infective stage (acanthella), with that of uninfected gammarids. Behavioural assays were conducted in four situations varying in predation risk and in food accessibility. Acanthella-infected amphipods showed an increase in refuge use and a general reduction in activity and food intake. There was no effect of parasite intensity on these traits. Uninfected individuals showed plastic responses to water-borne cues from fish by adjusting refuge use, activity and food intake. They also foraged more when the food was placed outside the refuge. At the intra-individual level, refuge use and food intake were positively correlated in infected gammarids only. Overall, our findings suggest that uninfected gammarids exhibit risk-sensitive behaviour including increased food intake under predation risk, whereas gammarids infected with the non-infective larvae of P. laevis exhibit a lower motivation to feed, irrespective of predation risk and food accessibility.
    International journal for parasitology 11/2013; 44(3-4). DOI:10.1016/j.ijpara.2013.11.001 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.
    Parasitology 10/2012; 140(2):1-8. DOI:10.1017/S0031182012001552 · 2.35 Impact Factor