Article

A natural and controlled source seismic profile through the Eastern Alps: TRANSALP

GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany; Freie Universität Berlin, Fachrichtung Geophysik, Malteser Str. 74-100, 12249 Berlin, Germany; Institut für Geowissenschaften, Universität Potsdam, POB 601553, 14415 Potsdam, Germany
Earth and Planetary Science Letters (Impact Factor: 4.72). 08/2004; DOI: 10.1016/j.epsl.2004.05.040

ABSTRACT The combined passive and active seismic TRANSALP experiment produced an unprecedented high-resolution crustal image of the Eastern Alps between Munich and Venice. The European and Adriatic Mohos (EM and AM, respectively) are clearly imaged with different seismic techniques: near-vertical incidence reflections and receiver functions (RFs). The European Moho dips gently southward from 35 km beneath the northern foreland to a maximum depth of 55 km beneath the central part of the Eastern Alps, whereas the Adriatic Moho is imaged primarily by receiver functions at a relatively constant depth of about 40 km. In both data sets, we have also detected first-order Alpine shear zones, such as the Helvetic detachment, Inntal fault and Sub-Tauern ramp in the north. Apart from the Valsugana thrust, receiver functions in the southern part of the Eastern Alps have also observed a north dipping interface, which may penetrate the entire Adriatic crust [Adriatic Crust Interface (ACI)]. Deep crustal seismicity may be related to the ACI. We interpret the ACI as the currently active retroshear zone in the doubly vergent Alpine collisional belt.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 114 stations from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) national broad-band network, some stations of the Mediterranean Very Broadband Seismographic Network (MedNet) and of the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). Vertical-component ambient noise data from 2005 October to 2007 March have been cross-correlated for station-pairs to estimate fundamental mode Rayleigh wave Green's functions. Cross-correlations are calculated in 1-hr segments, stacked over periods varying between 3 months and 1.5 yr. Rayleigh wave group dispersion curves at periods from 8 to 44 s were determined using the multiple-filter analysis technique. The study region was divided into a 0.2° × 0.2° grid to invert for group velocity distributions. Checkerboard tests were first carried out, and the lateral resolution was estimated to be about 0.6°. The resulting group velocity maps from 8 to 36 s show the significant difference of the crustal structure and good correlations with known geological and tectonic features in the study region. The Po Plain and the Southern Alps evidence lower group velocities due to soft alluvial deposits, and thick terrigenous sediments. Our results also clearly showed that the Tyrrhenian Sea is characterized with much higher velocities below 8 km than the Italian peninsula and the Adriatic Sea which indicates a thin oceanic crust beneath the Tyrrhenian Sea.
    Geophysical Journal International 03/2010; 180(3):1242-1252. · 2.72 Impact Factor
  • The New Scientist 07/2011; 211(2819):30. · 0.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analyses of Ps and Sp receiver functions from datasets collected by permanent and temporary seismic stations, image a seismic discontinuity, due to a negative velocity contrast across the entire Eastern Alps. The receiver functions show the presence of the discontinuity within the upper mantle with a resolution of tens of kilometers laterally. It is deeper (100–130 km) below the central portion of the Eastern Alps, and shallower (70–80 km) towards the Pannonian Basin and in the Central Alps. Comparison with previous studies renders it likely that the observed discontinuity coincides with the lithosphere–asthenosphere boundary (LAB) east of 15°E longitude, while it could be associated with a low velocity zone west of 15°E.
    Earth and Planetary Science Letters 10/2014; 403:199–209. · 4.72 Impact Factor

Full-text (2 Sources)

Download
177 Downloads
Available from
May 15, 2014