Article

A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles

Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea; School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea; Department of Chemistry, Hanyang University, Seoul 133-791, Republic of Korea
Scripta Materialia 01/2008; DOI: 10.1016/j.scriptamat.2008.01.047

ABSTRACT A new method was developed for the synthesis of Cu2O-coated multi-walled carbon nanotubes (MWCNTs) on the basis of Fehling’s reaction. The method involved dispersion of carbon nanotubes in Fehling’s reagent, followed by addition of formaldehyde as a reducing agent. The Cu2O-coated MWCNTs were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron, Raman and UV–Vis spectroscopy, and superconducting quantum interference device measurements. These novel materials could be used in catalysis and optoelectronic applications.

0 Bookmarks
 · 
141 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and β-ferric oxyhydroxide (β-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous β-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring β-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of β-FeOOH nanoparticles. The values of remanent magnetization (M r) and coercivity (H c) of the as-synthesized CNTs/β-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/β-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.
    Journal of Nanoparticle Research 14(12). · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report a simple and noncovalent method for coating multiwalled carbon nanotubes (MWCNTs) with polyaniline (PANI) nanospheres using a microemulsion polymerization method. In this method, aniline polymerization is performed with MWCNTs in the presence of sodium dodecyl sulfate (SDS), which serves as both a surfactant and a dopant. Morphological, structural, thermal, and electrical properties of MWCNT-PANI nanocomposites were analyzed. The TEM results of the nanocomposites prepared with surfactant reveal that 30-50-nm-diameter PANI nanospheres were coated on the surface of the MWCNTs. Composites prepared without surfactant were found to be in core-sheath-type cable structures. The conductivities of the nanocomposites synthesized through microemulsion polymerization were found to be one order of magnitude higher than both the conductivities of pure PANI and the composites prepared via in situ chemical polymerization without an assisting SDS surfactant. The mechanism for the formation of nanostructured composites is presented.
    Journal of Colloid and Interface Science 09/2009; 340(2):160-5. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to enhance the sensitivity of carbon nanotube based chemical sensors at room temperature operation, CNTs/CuO nanocomposite was prepared under hydrothermal reaction condition. The resulted-product was characterized with TEM (transmission electron microscopy), XRD (X-ray diffraction) and so on. A chemical prototype sensor was constructed based on CNTs/CuO nanocomposite and an interdigital electrode on flexible polymer substrate. The gas-sensing behavior of the sensor to some typical organic volatiles was investigated at room temperature operation. The results indicated that the carbon nanotube was dispersed well in CuO matrix, the CuO was uniformly coated on the surface of carbon nanotube, and the tubular structure of carbon nanotube was clearly observed. From morphology of TEM images, it can also be observed that a good interfacial adhesion between CNT and CuO matrix was formed, which maybe due to the results of strong interaction between CNTs with carboxyl groups and CuO containing some hydroxy groups. The CNTs/CuO nanocomposite showed dramatically enhanced sensitivity to some typical organic volatiles. This study would provide a simple, low-cost and general approach to functionalize the carbon nanotube. It is also in favor of developing chemical sensors with high sensitivity or catalysts with high activity to organic volatiles at low temperature.
    Procedia Engineering. 36:235–245.

Full-text (2 Sources)

View
101 Downloads
Available from
May 22, 2014