Article

The method of the false transient for the solution of coupled elliptic equations

School of Mechanical and Industrial Engineering, University of New South Wales, Kensington, Australia 2033
Journal of Computational Physics (Impact Factor: 2.14). 08/1973; DOI: 10.1016/0021-9991(73)90097-1

ABSTRACT A method for the numerical solution of a system of coupled, nonlinear elliptic partial differential equations is described, and the application of the method to the equations governing steady, laminar natural convection is presented. The essential feature of the method is the conversion of the equations to a parabolic form by the addition of false time derivatives, thus, enabling a marching solution, equivalent to a single iterative procedure, to be used. The method is evaluated by applying it to a well known two-dimensional problem and some examples of its use in three dimensions are given.

0 Bookmarks
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes a numerical solution procedure to study heat transfer process by two dimensional natural convection phenomena in a non-rectangular enclosure of arbitrary geometry. Momentum transfer in the system is described by an elliptic partial differential equation, which governs the behaviour of the stream function. An algebraic grid generation technique is used to transform the governing equations into a body fitted rectangular co-ordinate system that allows coincidence of all boundary lines with the co-ordinate lines. Numerical solutions of the resulting equations in the computational domain are obtained using an alternating directional implicit method by adding false transient terms. Results from the numerical experiments in the case of a non-rectangular enclosure are obtained that show the magnitude and directions of convection currents and contours of the temperature. The effect of increase in the inclination of the upper boundary is to increase the average Nusselt number. Dieser Artikel beschreibt den numerischen Lösungsalgorithmus, der für die Untersuchung des Wärmeübergangs mit zweidimensionaler freier Konvektion in nicht-rechtwinkliger Umrandung eingesetzt wird. Der Impulstransport im System wird durch eine elliptische, partielle Differentialgleichung beschrieben. Eine algebraische Netzgenerierungsmethode wird für die Transformation des beschreibenden Differentialgleichungssystems in ein rechtwinkliges Koordinatensystem verwendet. Numerische Lösungen der resultierenden Gleichungen im Berechnungsgebiet wurden durch Verwendung einer speziellen impliziten Methodik ermittelt. Die erhaltenen Ergebnisse werden exemplarisch anhand der Verläufe von Stromlinien und Isothermen graphisch dargestellt.
    Forschung auf dem Gebiete des Ingenieurwesens 12/1998; 65(7):301-308. · 0.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transient natural convection in a fluid contained in a rectangular enclosure, the wall of which is maintained at a uniform temperature which changes at a steady rate, is approached by a numerical method. Numerical solutions are obtained forPr=0.73, 7.3 and 73 and a range of Rayleigh numbersRa=102 108. At relatively low Rayleigh numbers the flow is characterized by the development of double cells with flow up the center and down the sidewalk However it was found that an increase of the Rayleigh number leads to the development of strong secondary circulation on the axis of symmetry of the cavity near the top wall. Thus, as the Rayleigh number is increased the secondary cells grow in size. The effects of the secondary cells on the temperature field and heat transfer coefficients are discussed. Most results are obtained for the case of a square cavity (E=2) but the influence of the aspect ratio of the cavity is also studied forE=1 and 4.Mit einer numerischen Methode wird die nichtstationre freie Konvektion im rechtwinkeligen Hohlraum angenhert, wenn die Wnde auf einheitlicher Temperatur sind, die sich linear mit der Zeit ndert. Betrachtet wird der Bereich vonPr=0,73, 7,3 und 73 undRa zwischen 102 und 108. Bei kleinenRa-Werten bilden sich Doppelzellen, die im Zentrum aufwrts und an den Wnden abwrts strmen. Bei hherenRa-zahlen bildet sich eine ausgeprgte Sekundrzirkulation in der Symmetrieachse nahe der Deckelflche. Diese Sekundrzellen wachsen mit steigenderRa-Zahl. Ihre Wirkungen auf Temperaturfeld und Wrmebergang werden diskutiert. Die meisten Ergebnisse werden fr den quadratischen Hohlraum(E = 2) erhalten, aber auch die GrenverhltnisseE=1 und 4 werden betrachtet(E ist Quotient aus Hhe zu halber Breite).
    Heat and Mass Transfer 11/1982; 16(4):199-207. · 0.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A fictitious time is introduced into the unsteady equation of the stream function rendering it into a higher-order ultra-parabolic equation. The convergence with respect to the fictitious time (we call the latter 'internal iterations') allows one to obtain fully implicit nonlinear scheme in full time steps for the physical-time variable. For particular choice of the artificial time increment, the scheme in full time steps is of second-order of approximation. For the solution of the internal iteration, a fractional-step scheme is proposed based on the splitting of the combination of the Laplace, bi-harmonic and advection operators. A judicious choice for the time staggering of the different parts of the nonlinear advective terms allows us to prove that the internal iterations are unconditionally stable and convergent. We assess the number of operations needed per time step and show computational effectiveness of the proposed scheme. We prove that when the internal iterations converge, the scheme is second-order in physical time and space, nonlinear, implicit and absolutely stable. The performance of the scheme is demonstrated for the flow created by oscillatory motion of the lid of a square cavity. All theoretical findings are demonstrated practically.
    International Journal for Numerical Methods in Fluids 01/2007; 53:417-442. · 1.35 Impact Factor