Studies on the electrochemiluminescent behavior of luminol on indium tin oxide (ITO) glass

Institute of Analytical Chemistry, Department of Chemistry, Suzhou University, China–Singapore Industrial Park, Suzhou 215123, PR China; Department of Chemistry, Nanjing University, Nanjing 210093, PR China
Journal of Luminescence (Impact Factor: 2.14). 01/2010; DOI: 10.1016/j.jlumin.2010.05.020

ABSTRACT The electrochemiluminescence (ECL) of luminol on indium tin oxide (ITO) glass was high even under a low potential around 0.4–0.5 V, which was quite different from other electrodes such as platinum. ITO nanoparticles were synthesized and used in the research on ITO glass in the ECL process. A static interaction between ITO and luminol is confirmed from UV–vis and fluorescence spectra. Then the ECL enhancement can be supposed to originate from the adsorption of luminol on ITO, which facilitated luminol’s oxidization to the excited state, giving out ECL. On the other hand, ITO can catalyze the generation of reactive oxygen species (ROSs), similar to some other nanomaterials, which also favored the ECL enhancement of luminol.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microfabrication and successful testing of a series of three ITO (Indium Tin Oxide) microsystems for amperometric detection of cells exocytosis are reported. These microdevices have been optimized in order to simultaneously (i) enhance signal-to-noise ratios, as required electrochemical monitoring, by defining appropriate electrodes geometry and size, and (ii) provide surface conditions which allow cells to be cultured over during one or two days, through apposite deposition of a collagen film. The intrinsic electrochemical quality of the microdevices as well as the effect of different collagen treatments were assessed by investigating the voltammetric responses of two classical redox systems, Ru(NH(3))(6)(3+/2+) and Fe(CN)(6)(3-/4-). This established that a moderate collagen treatment does not incur any significant alteration of voltammetric responses or degradation of the excellent signal-to-noise ratio. Among these three microdevices, the most versatile one involved a configuration in which the ITO microelectrodes were delimited by a microchannel coiled into a spiral. Though providing extremely good electrochemical responses this specific design allowed proper seeding and culture of cells permitting either single cell or cell cluster stimulation and analysis.
    Biophysical chemistry 03/2012; 162:14-21. · 2.28 Impact Factor