Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field

Soft Matter (Impact Factor: 4.15). 01/2011; 7(10):4801. DOI: 10.1039/C0SM01264E
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fast drug delivery is very important to utilize drug molecules that are short lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard permeability assay is based on the increase of the fluorescence signal from 5(6)-Carboxyfluorescein dye when it the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in case of the MgSO4. The experiments also indicate that the magnetic nanoparticle generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.
    The Journal of Physical Chemistry B 08/2014; · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. We highlight how recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Nanoscale vesicles actuated by incorporated nanoparticles allow for controlling location and timing of compound release, which enables e.g. use of more potent drugs in drug delivery as the interaction with the right target is ensured. This review emphasizes recent results on the connection between nanoparticle design, vesicle assembly and the stability and release properties of the vesicles. While focused on lipid vesicles magnetically actuated through iron oxide nanoparticles, these insights are of general interest for the design of capsule and cell delivery systems for biotechnology controlled by nanoparticles.
    New Biotechnology 12/2014; · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Specific targeting and controlled release are crucial factors in the administration of drugs and therapeutic biomolecules. It has been shown that drug delivery systems can significantly benefit of the introduction of superparamagnetic nanoparticles in terms of both targeting and controlled release. Magnetic gradients can be used to target therapeutics to specific regions, while alternating magnetic fields produce frequency-dependent effects at the nanoparticle level. This review reports on the latest developments of multifunctional systems based on magnetic nanoparticles where the release of drugs and/or biomolecules is triggered by the application of an external magnetic field. The potentials of these systems are presented through examples in the fields of surface functionalized magnetic nanoparticles, magnetic polymer nanocomposites and magnetoliposomes. Recent results suggest the importance of integrating multiple functions within a single nanostructured device in order to successfully transport, localize and release drugs and biomolecules.
    Current Opinion in Colloid & Interface Science 10/2013; 18(5):459–467. · 6.40 Impact Factor