Article

Impacts of climate change on Swiss biodiversity: An indicator taxa approach

Biological Conservation 01/2011; 144:866-875. DOI: 10.1016/j.biocon.2010.11.020

ABSTRACT We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of ‘greenhouse’ gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.

1 Bookmark
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.
    PLoS ONE 01/2013; 8(7):e68850. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.
    PLoS ONE 07/2013; http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0068850. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been predicted that Europe will experience a rise in temperature of 2.2–5.3 °C within this century. This increase in temperature may lead to vegetation change along altitudinal gradients. To test whether vegetation composition has already changed in the recent decade due to current warming (and other concomitant environmental changes), we recorded plant species composition in 1995 and 2005/2006 in Swiss pre-alpine fen meadows (800–1,400 m a.s.l.). Despite no obvious changes in the management of these fens, overall, plant species richness (cumulative number of plant species at five plots per site) significantly increased over this period. This was mainly due to an increase in the number of thermophilous, rich-soil-indicator and shade-indicator species, which corresponded to increased community productivity and shading within the vegetation layer. In contrast, fen specialists significantly declined in species numbers. The strongest species shifts occurred at the lowest sites, which overall had a higher colonization rate by new species than did sites at higher altitudes. Vegetation change along the altitudinal gradient was also affected by different types of land management: early-flowering species and species with low habitat specificity had high colonization rates in grazed fens, especially at low altitudes.
    Alpine Botany 122(1). · 1.77 Impact Factor

Full-text (2 Sources)

Download
104 Downloads
Available from
May 22, 2014