Article

Functional morphology of the retina of Chrysops caecutiens L. and Haematopota pluvialis L. (Diptera : Tabanidae): Region around eye equator

Zoologisches Institut der Universität, Luisenstr. 14, D — 8000 München 2, F.R.G.
International Journal of Insect Morphology and Embryology 01/1986; 15(4):311-319. DOI: 10.1016/0020-7322(86)90048-6

ABSTRACT The ommatidia in the midregion of the eyes of females in 2 tabanid species, Chrysops caecutiens L. and Haematopota pluvialis L. (Diptera : Tabanidae) are compared with those in muscoid flies. They conform in their basic fine structure to ommatidia of other dipterans. However, whereas in this part of the retina of higher dipterans the rhabdomeres of all the retinula cells are twisted, in the tabanids only the peripheral rhabdomeres R1–6 twist. The central retinula cells R7 can be assigned to 3 morphological types, depending on the orientation of the microvilli and rhabdomeres: (i) dorsal (or ventral in the lower eye part); (ii) frontal; or (iii) caudal. Cells of these 3 types are distributed within the ommatidial array in an irregular pattern. The microvilli of the retinula cells R8 are all oriented in the same direction, approximately dorsoventral. All the central rhabdomeres in the midregion of the retina are untwisted. This could subserve high polarization sensitivity of the retinula cells R7/8, which may assist in host-finding by these bloodsucking flies.

1 Follower
 · 
197 Views
 · 
0 Downloads
  • Source
    • "Tabanids are mainly diurnal, and optical cues are relevant for mating, host location and oviposition. The ventral eye region has special morphological features that indicate high polarization sensitivity (Wunderer and Smola, 1986). Horizontally polarized light is attractive to both male and female tabanids (Egri et al., 2012b; Horváth et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tabanids are nuisance pests for people and livestock because of their painful and irritating bite, persistent biting behavior, and blood ingestion. About 4,400 tabanid species have been described; they are seasonally present in all kinds of landscapes, latitudes, and altitudes. High populations have a significant economic impact on outdoor activities, tourism, and livestock production. Tabanids are also vectors of animal disease agents, including viruses, bacteria and parasites. However, tabanids have received little attention in comparison with other hematophagous Diptera. Here, we highlight the many direct and indirect impacts of tabanids and provide a brief summary of tabanid morphology, biology, and life cycle. Impacts include pathogen transmission, parasite transportation (Dermatobia hominis), biological transmission (Loa loa), and mechanical transmission of viruses, such as equine infectious anemia virus, protozoa, such as Trypanosoma evansi and Besnotia besnoiti, and bacteria, such as Bacillus anthracis and Anaplasma marginale. We discuss parameters of mechanical transmission and its mathematical modeling. Control methods for tabanid populations are also summarized; these include trapping, the use of insecticides, repellents, and livestock protection. Lastly recommendations are provided for the direction of future research.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 04/2014; 28. DOI:10.1016/j.meegid.2014.03.029 · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The morphology of the sensilla sensitive to vertebrate host-associated stimuli is diverse reflecting the numerous independent origins of haematophagy within the insects. Using electron microscopic techniques, the sensilla of mosquitoes and blackflies have been the most thoroughly studied, although numerous works have been conducted on other blood-feeders. Notably lacking are fine structure studies on blood-feeding maggots and ectoparasitic, adult Muscomorpha.In comparing blood-feeders with other insects it becomes apparent that: (1) carbon dioxide plays a significantly greater role in location of food by haematophagous insects than by phytophagous and saprophagous species; (2) only in blood-feeders do the adenosine phosphate nucleotides, a single group of compounds, appear to be the phagostimulants for almost all species; and (3) feeding deterrents are unknown in haematophagous insects.When the sensory complements of the various groups of blood-feeders are compared, three points emerge. First, reduction in numbers of olfactory chemosensilla that mediate odour cues used in long-distance, host-orientation occurs in male nematocerans and in females of completely autogenous species of mosquitoes and black flies. Second, there is a striking correlation between the number of labial chemo- and mechanosensilla and the feeding behaviour of the insect. Third, there is a possible positive correlation between the number of chemosensitive antennal neurones and the distance travelled by the insect to the host.RésuméLa morphologie des sensilles associés à la recherche d'hôtes vertébrés est variée, ce qui reflète les diverses origines de l'hématophagie chez les insectes. Utilisant la microscopie électronique, les sensilles des moustiques et mouches noires ont été étudiés en détail, en parallèle, de nombreux autres travaux ont porté sur d'autres espèces hématophages. La description de l'ultrastructure des sensilles d'asticots hématophages et ectoparasites a jusqu'à présent été négligée.En comparant les insectes hématophages avec les autres insectes non hématophages il devient apparent que; (1) le dioxide de carbone joue un rôle beaucoup plus important chez les hématophages que chez les phytophages et les détritivores, (2) les nucleotides adénosine phosphates agissent en tant que phagostimulants seulement chez les hématophages, ce chez presque toutes les espèces et (3) il n'y a aucun agent phago répresseur identifié a ce jour chez les hématophages.Trois phénomènes émergent lorsqu'on compare les processus sensitifs de divers groupes d'insectes hématophages. Preièrement, la réduction du nombre des chemosensilles olfactifs qui captent les stimuli olfactifs sur de longues distances, l'orientation vers l'hôte se produit aussi bien chez les mâles et femelles d'espèces autogènes de mostiques et de mouches noires. Deuxièmement, il y a une corrélation évidente entre le nombre de chemo- et mécano-sensilles labiaux et le comportement alimentaire des insectes. Troisièmement, il y a la possibilité d'une corrélation positive entre le nombre de neuronnes chemosensitifs des antennes et la distance parcourue par l'insecte pour atteindre l'hôte.
    International Journal of Tropical Insect Science 11/1987; 8:627 - 635. DOI:10.1017/S1742758400022712
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tabanids are nuisance pests for people and livestock because of their painful and irritating bite, persistent biting behavior, and blood ingestion. About 4,400 tabanid species have been described; they are seasonally present in all kinds of landscapes, latitudes, and altitudes. High populations have a significant economic impact on outdoor activities, tourism, and livestock production. Tabanids are also vectors of animal disease agents, including viruses, bacteria and parasites. However, tabanids have received little attention in comparison with other hematophagous Diptera. Here, we highlight the many direct and indirect impacts of tabanids and provide a brief summary of tabanid morphology, biology, and life cycle. Impacts include pathogen transmission, parasite transportation (Dermatobia hominis), biological transmission (Loa loa), and mechanical transmission of viruses, such as equine infectious anemia virus, protozoa, such as Trypanosoma evansi and Besnotia besnoiti, and bacteria, such as Bacillus anthracis and Anaplasma marginale. We discuss parameters of mechanical transmission and its mathematical modeling. Control methods for tabanid populations are also summarized; these include trapping, the use of insecticides, repellents, and livestock protection. Lastly recommendations are provided for the direction of future research.
Show more